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Abstract

This paper investigates the effort-maximizing design of multi-stage contests with

tree-like architectures through both the architecture and the prize. We first show

that given the architecture, the whole budget should be assigned to a single match.

This match might not be the final in general, but it must be the final if the archi-

tecture is symmetric. If the contest organizer can design the architecture, winner-

take-all is optimal, disentangling two design elements. For contest architecture,

we use dynamic programming and induction to estimate the optimized total effort

level. Our new approach can be applied to extend Gradstein and Konrad (1999)’s

result about how the optimal architecture hinges on the noisy level of matches.
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1 Introduction

Contests often include multiple stages. At each stage, parallel single-winner matches

occur, and only winners are promoted to the next stage. Contestants put in costly efforts

in each stage to reach the final and win prizes. Such contentions, labeled as tree contests

(T-contests for short) by Gradstein and Konrad (1999), are used in competitions ranging

from sports events to promotions within organizations. For example, an employee vies

with intra-group colleagues to be promoted to a group manager, then competes with other

group managers for the next promotion opportunity, and so on. In those T-contests, the

primary objective is to maximize the total effort of all agents at all stages.

A central question in T-contests is the design of contest architecture and prize struc-

ture. Our analysis of contest architecture is motivated by three features of real-world

T-contests. First, every embedded match has a single winner. Second, early efforts are

sunk when contestants proceed: Excellent performance in earlier stages cannot compen-

sate for poor performance in later stages. Third, different matches in the same stage can

have different numbers of contestants.

In addition to the contest architecture, the effort provision in T-contests is also af-

fected by the prize structure (see Rosen (1986)). Unlike one-stage simultaneous contests

with the whole budget going toward the top prize, T-contests are more likely to award an

intermediate prize.1 For example, employees who are eliminated in a promotion compe-

tition retain their original positions, and their increased salaries are intermediate prizes.

Such an exploration naturally raises several questions. First, given the contest architec-

ture and a fixed prize budget, is a winner-take-all contest necessarily better than one that

awards intermediate prizes? Second, how does the (a)symmetry of the contest architec-

ture influence the optimal prize structure? Third, what is the optimal tree architecture?

Nature of the Problem

In this paper, the design elements are contest architecture and prize structure. Both

elements, even if considered separately, feature important aspects of real-world contest

design and thus attract the attention of researchers. However, in either dimension, pre-

vious results are obtained from restricted settings.

1Multiple prizes also exist in simultaneous contests. See Xiao (2016) and Fu, Wu and Zhu (2022).
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For contest architecture, Gradstein and Konrad (1999) make the first attempt, assum-

ing that the winner-take-all rule is applied exogenously. They consider two alternatives:

a simultaneous contest and a contest with symmetric binary tree architecture, in which

2k contestants are sequentially eliminated from the race through k stages of pairwise

matches. However, this restricts the number of participants to a power of 2. By contrast,

imagine a contest with three players. There are two possible structures: a simultane-

ous contest, and a two-stage contest in which the winner between two players competes

with the third player for victory. Direct comparison between two architectures is simple

algebra, while Gradstein and Konrad (1999)’s framework does not apply.

For prize structure, Rosen (1986) concentrates on the symmetric binary tree architec-

ture and asserts that the winner-take-all rule is optimal. Knyazev (2017) generalizes the

number of players to have the form of mN , and the players are eliminated sequentially

using m-player matches in N stages. However, this formalization imposes unnecessary

requirements on the contest architecture, and even on the number of contestants.

There are additional concerns when two design elements are jointly optimized. Us-

ing backward induction, we should first characterize the optimal prize structure in all

possible contest architectures. Afterward, we search for the optimal contest architecture.

Unfortunately, even if the number of contestants is a power of 2, we cannot conclude that

adopting the winner-take-all rule in a symmetric binary tree architecture is optimal. A

different contest architecture with a different prize structure might be better.

Moreover, all previous methods cannot handle asymmetric contest architecture where

two matches in the same stage have different numbers of participants. Analyzing symmet-

ric architecture is simple since all contestants adopt identical strategies within the same

stage. If the architecture is asymmetric, then the subgame perfect equilibrium should be

solved match-by-match rather than stage-by-stage.

How does asymmetry influence the outcome of the contest design? Consider the

example of promotions within organizations. If the organization is highly asymmetric, is

it still optimal to pay a large first-place prize? In technical-oriented unicorns, there are

far more employees in technical-related departments than in other departments. Should

the CTO be paid a higher salary than the CEO? The previous results fail to address this

question.
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Our Approach and Results

In our model, an arbitrary number of homogeneous contestants are successively elimi-

nated through a series of stages. In each stage, contestants are divided into predetermined

groups and compete within each group, and a unique winner of each group advances to

the next stage by the Tullock winner-selection mechanism. The contest organizer designs

the tree architecture and allocates the prize money to maximize the total effort. To cap-

ture the possibility of asymmetry, we define the T-contest recursively. In particular, a

T-contest includes a final match and several sub-contests that are also T-contests and

determine who will participate in the final match.

Given the contest architecture, we first show that the contest organizer should devote

the entire budget to a single match, which we call the pivotal match. The pivotal match

principle springs from two facts about linearity: First, the feasible region of the prize

structure is a simplex; Second, the total effort is a linear function of the prize structure.

When the contest architecture is symmetric, namely, all matches in the same stage have

an identical number of participants, the winner-take-all rule is optimal. We consider the

most general form of symmetric architecture where matches in different stages can differ

in the number of participants, which, to our knowledge, has never been studied in the

literature. Nevertheless, the pivotal match is not necessarily the final match in general

when the architecture is asymmetric. This finding demonstrates that the restriction on

symmetry architecture is a loss of generality.

We can use the pivotal match principle to disentangle the design of contest architecture

and prize structure. To this end, we show that any contest architecture whose pivotal

match is not the final is sub-optimal. If the pivotal match is not the final in a given tree

architecture, contestants who cannot reach the pivotal match will shirk by always exerting

zero effort. Then, if the contest designer can design the architecture, it is better to insert

those shirking contestants into other stage-1 matches that may enter the pivotal match.

Therefore, the contest designer only needs to adjust the tree architecture, and give the

entire prize money to the final champion to maximize the total effort of all contestants.

As for analyzing the optimal tree architecture, it turns out to be a dynamic pro-

gramming problem since we adopt a recursive definition of tree architecture. A contest

architecture is optimal if its final match is appropriately designed and all its sub-contests

are optimal. The whole architecture cannot be optimal if any sub-contest is organized
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poorly. Moreover, even if all sub-contests are optimal, the efficiency of the contest still

rides on the final match design. Therefore, the design of the contest architecture ulti-

mately comes down to recursively designing the finals of each sub-contest.

We then provide upper bounds for the expected total effort using induction methods,

depending on the underlying winner-selection mechanism. When the contest is relatively

discriminatory (i.e., the discriminatory power is at least one in the Tullock framework),

the simultaneous contest achieves the upper bound and is thus optimal. With a higher

discriminatory power, the equilibrium effort is relatively higher, resulting in a lower con-

testant’s payoff. Hence, the expected payoff of participating in the final match in a

multi-stage contest is so small that contestants have little incentive to make an effort in

previous stages. Therefore, it is inefficient to organize a contest with multiple stages, and

the one-shot simultaneous contest is optimal.

When discriminatory power is less than one, the upper bound we provide is quite

tight since the bound can be reached infinitely many times as the number of contestants

(n) grows. Only if n is a power of 2, the upper bound is achieved by a symmetric binary

tree architecture, which agrees with the findings in Gradstein and Konrad (1999). If

not, the optimal architecture is generally asymmetric, and the contest designer faces a

trade-off between exploiting contestants and balancing contestants. Although increasing

the number of stages could elicit more effort, its side-effect is the imbalance caused by

prolonged T-contests, which has not been well recognized since the specific shape of

contest architecture is ignored in the literature.

When the contest technology is sufficiently noisy (i.e., discriminatory power is less

than 2/3), the architecture solely containing bilateral matches, in which each contestant

experiences at most one bye, is optimal. On the one hand, T-contests with bilateral

embedded matches have the most stages. On the other hand, the contest organizer

should keep the number of nontrivial matches of all contestants as equal as possible

for balance concerns. As a result, exploitation and balance align perfectly. However,

when the contest technology is moderately noisy, exploitation and balance are conflicting

objectives that must be leveled by the contest organizer.
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Related Literature

There has been much research on contest design in recent decades.2 Our paper pri-

marily belongs to the literature on multi-stage sequential elimination contest design. The

literature on contests with tree architecture dates back to the seminal paper of Rosen

(1986). With winner-take-all, Gradstein and Konrad (1999) endogenize the stage number

of T-contests and demonstrate that the stage number depends on the particular Tullock

contest technology. We provide a general framework that considers both design elements,

which are possibly entangled. Even if we focus on a single design element, our results

extend Rosen (1986) and Gradstein and Konrad (1999), respectively.

Given the prize structure, a handful of papers have examined structure design in

multi-stage contests. In a two-stage grouping contest setting, Amegashie (1999) derives

the optimal number of finalists. Moldovanu and Sela (2006) explore whether a contest

should involve a preliminary stage that selects finalists. Cohen, Maor and Sela (2018)

study the optimal head start to favor the finalist who is top-ranked in the first stage.

This paper is also linked to the literature on optimal prize allocation by the contest

organizer. Several papers have examined optimal prize structures in one-shot contests.3

In multi-stage contests, including two-stage contest (Krishna and Morgan, 1998) and

nested pooling contests (Fu and Lu, 2012), the winner-take-all rule is optimal. Knyazev

(2017) attempts to determine the optimal prize structure for a multi-stage contest with

mN players that maximizes the designer’s profit, and the players are eliminated sequen-

tially through N stages. Feng et al. (2024) study the prize design in team contests, show

that the winner should take all, and examine how to select the winner.

The rest of the paper is organized as follows. Section 2 sets up the model and char-

acterizes the subgame perfect Nash equilibrium. In Section 3, we present the pivotal

match principle and rationalize the winner-take-all rule. Section 4 characterizes the op-

timal contest architecture by exploring its dynamic programming nature. ?? discusses

extensions of the model. Appendix A collects some technical proofs.

2See Konrad (2009), Fu and Wu (2019) for detailed surveys.
3See Krishna and Morgan (1998), Moldovanu and Sela (2001), Cohen, Kaplan and Sela (2008), Drugov

and Ryvkin (2020), Letina, Liu and Netzer (2020) for examples.
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2 Model

2.1 Setup

There are n homogeneous risk-neutral contestants involved in a T-contest that consists

of several stages. In each stage, contestants are embedded into different matches.

Winner-Selection Mechanism in a Match

In a match with L ≥ 2 contestants, the probability of winning is given by the gener-

alized Tullock contest success function:

pi(ei, e−i) =


eγi∑L
j=1 e

γ
j

,
∑L

j=1 ej > 0,

1
L
,

∑L
j=1 ej = 0,

(1)

where ei is the effort level of contestant i, and e−i collects the effort of other contestants.

γ is the discriminatory power parameter. To ensure pure strategy equilibrium in each

match and avoid trivial analysis, we impose the restriction γ ∈ (0, n
n−1

).4 Let c(ei) denote

the cost of effort. We assume the cost of effort is linear c(ei) = ei.
5

Contest with Tree Architecture

In a T-contest with architecture T , contestants are denoted by the nodes in the lowest

level of the tree, and the set of contestants is denoted by N (T ) = {1, · · · , n}. The set

of matches in T is denoted by X (T ) and represented by nodes that are not in the lowest

level. Matches in the same stage occur simultaneously, and the winner of a stage-k match

advances to a predetermined match in stage k + 1. The final match is denoted by xR.

In the T-contest shown in Figure 1, black circles denote contestants, the double circle

denotes the final, and hollow circles denote other matches.

To facilitate the analysis, we introduce the following notations. Let n(x) denote the

number of participants in match x and p(x) denote the match to which the winner of

match x advances. We call p(x) the parent match of x.6 If n(x) > 1, match x is nontrivial,

4When γ ≥ n
n−1 , the simultaneous contest suffices to fully dissipate the rent (Baye, Kovenock and

de Vries, 1999).
5Section B.3 considers nonlinear costs.
6Note that p(xR) is not well defined, while p(·) is well defined for a contestant i. In a slight abuse of

notation, we say that p(i) represents the first match contestant i takes part in.
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xR

x1

x3

1 2 3

x4

4 5

x2

x5

6

x6

7

Stage-3/final match

Stage-2 matches

Stage-1 matches

Contestants

Figure 1: T-Contest

and the winner is selected by Equation 1 and advances to p(x). If n(x) = 1, x is trivial,

and its unique participant advances to p(x) through a bye.7 If match x′ occurs after x,

and the winner of x has to win x′ to win the championship, x′ is called a future match of

x. For each match x, the set of future matches is defined as F(x), and p(x) ∈ F(x). A

sub-contest includes an initial node and all its successor nodes in lower levels.8

Prize Structure

In a T-contest with architecture T , the prize structure v(·) specifies the prize v(x) allo-

cated to the winner of match x ∈ X (T ), satisfying the budget constraint
∑

x∈X (T ) v(x) ≤

1. Negative prizes are prohibited to align with examples of sports competitions and or-

ganizational promotions. Let v̂(x) denote the effective prize for match x, containing dual

benefits of winning x: One is the direct benefit of obtaining prize v(x), and the other is

the indirect benefit of future prizes by advancing to the next stage. Clearly, v̂(x) ≥ v(x).

2.2 Equilibrium

The solution concept is subgame perfect Nash equilibrium. For a match x with ef-

fective prize v̂(x), the present payoff of participant i is pi(ei, e−i)v̂(x) − ei. Since all

n(x) participants are homogeneous and have a common effective prize, the symmetric

equilibrium effort in match x can be derived as e∗(x) = (n(x)−1)γ
n(x)2

v̂(x). Lemma 1 formally

7We allow trivial matches because contestants are labeled by nodes at the lowest level. It is equivalent
to ruling out trivial matches if different contestants can start from different layers.

8In Figure 1, Contestants 1 to 5 compete in two stage-1 matches, and two winners advance to stage
2. Matches x5, x6 are trivial, and Contestants 6 and 7 enter the stage-2 match x2. The set of future
matches of Contestant 1 is {xR, x1, x3}. For match x5, p(x5) = x2 and F(x5) = {xR, x2}.
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presents the equilibrium by pinning down the analytical formula of effective prize v̂(x).

Lemma 1. There exists a unique subgame perfect Nash equilibrium. In match x ∈ X (T ),

the equilibrium effort of each contestant is e∗(x) = (n(x)−1)γ
n(x)2

v̂(x), where the effective prize

v̂(x) =
∑

x′∈X (T ) r(x
′, x)v(x′) is a linear function on {v(x)}x∈X (T ). Here

r(x′, x) = 1(x′ ∈ F(x))
∏

z∈F(x)\F(x′)

[
n(z)− (n(z)− 1)γ

n(z)2

]
+ 1(x′ = x) (2)

Proof. See the Appendix.

Term r(x′, x) in Lemma 1 represents the marginal effect of assigning a prize to match

x on the effective prize of match x′, thus reflecting the transmission mechanism of prize

allocation in stimulating effort. Clearly, the prize awarded for a given match boosts effort

only in matches that belong to the corresponding sub-contests.

Based on the equilibrium result, we can derive the total effort in the whole T-contest

given the contest architecture T and its associated reward scheme v, denoted by TE(T, v),

TE(T, v) =
∑

x∈X (T ) TE(x|T, v) =
∑

x∈X (T )
(n(x)−1)γ

n(x)
v̂(x), where TE(x|T, v) denotes the

induced effort of match x and is determined by n(x)e∗(x). The contest organizer aims to

maximize TE(T, v) through designing T and v. According to Lemma 1, increasing the

final prize value v(xR) will strictly increase the effective prize v̂(x) for any match x since

xR ∈ F(x). Therefore, the budget constraint should be binding, i.e.,
∑

x∈X (T ) v(x) = 1.

3 Optimal Prize Allocation

In this section, we explore the optimal reward scheme for a given contest architecture.

3.1 Pivotal Match Principle

We first investigate how the prize structure affects the total effort of the T-contest.

Given the T and v, the induced total effort is TE (T, v) =
∑

x∈X (T )H(T, x)v(x), which

is a linear function on {v(x)}x∈X (T ) and we can show thatH(T, x) =
∑

z∈X (T )
(n(z)−1)γ

n(z)
r(x, z).

Here, H(T, x) represents the marginal effect of assigning a prize to match x on the total

effort, which aggregates the marginal effects on match effort across all matches. Hence,

H(T, x) also represents the total effort level when the entire budget goes to match x.
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Based on this observation, we can write out a recursive formula for H(T, x),

H(T, x) =
(n(x)− 1)γ

n(x)
+

1

n(x)

[
1− (n(x)− 1)γ

n(x)

] ∑
x′:p(x′)=x

H(T, x′), (3)

where the former and latter terms represent the effort level in x and all sub-contests rooted

at x, respectively. In each sub-contest, the effective prize of winning is 1
n(x)

[
1− (n(x)−1)γ

n(x)

]
.

To initiate the recursion, we define H(T, i) = 0 for contestant i ∈ N (T ).

Since the domain of {v(x)}x∈X (T ) is a simplex, the optimal prize structure should

allot the entire prize to a single match. It is called a pivotal match, denoted by xP . The

following pivotal match principle establishes the optimal prize allocation. Note that the

pivotal match always exists but may not be unique in some corner cases.

Proposition 1 (Pivotal Match Principle). Given the contest architecture T , the optimal

prize structure is v∗(xP ) = 1, where xP maximizes H(T, x).

Proposition 1 is new in the literature since we allow arbitrary contest architecture.

To illustrate how to identify the pivotal match, consider a 5-player example shown in

Figure 2 and calculate H(T, x) of each match x accordingly. The results are summarized

in Table 1. When γ ∈ (0, 5
4
), we have H(T, x2) > H(T, xR) > H(T, x4) = H(T, x5) >

H(T, x1) = H(T, x3). Therefore, the pivotal match in this tree architecture is xP = x2.

xR

x1

x3

1

x2

x4

2 3

x5

4 5

Figure 2: 5-player example

Match H(T, ·)

xR
16γ−6γ2+γ3

16

x1 0

x2
4γ−γ2

4

x3 0

x4
γ
2

x5
γ
2

Table 1: H(T, x) of Matches

Conventional wisdom suggests that a prize at a higher rank in the hierarchy could

make a contestant exert more effort because he has to continually work to climb to the

top. However, the winner-take-all rule is not necessarily optimal (see Figure 2). In
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Proposition 2, we show that as the contest becomes noisier, the winner-take-all is more

likely to be optimal.

Proposition 2. For any contest architecture T , there exists a threshold γ̄(T ) ∈ [0, n
n−1

]

such that the winner-take-all rule is optimal if and only if γ ≤ γ̄(T ).

Proof. Given the contest architecture T and a match x ̸= xR, there exists a threshold

γ̄(T, x) ∈ [0, n
n−1

] such that H(T, xR) ≥ H(T, x) if and only if γ ≤ γ̄(T, x). Then,

γ̄(T ) = minx γ̄(T, x). See the Appendix for details.

Proof of Proposition 2.

Note that it is possible that the winner-take-all rule is optimal for all or none of γ. For

the former case (γ̄(T ) = n
n−1

), think over the following architecture for example. The final

match occurs between two contestants; one is selected by a k-stage symmetric binary tree

contest, while the other is selected by a k + 1-stage one. For the latter case (γ̄(T ) = 0),

consider another example. The final match occurs between one pre-determined contestant

and another contestant that is selected by a k-stage symmetric binary tree contest. Here,

the pivotal match is the sub-final regardless of γ if k ≥ 2.

This result seems counterintuitive. Recall the recursive formula defined by Equation 3.

If we regard {H(T, x′)}x′:p(x′)=x as constants, then as γ increases, H(T, x) is more likely

to be greater than maxH(T, x′) and the winner-take-all rule is more likely to be optimal.

However, this intuition ignores the recursive nature of T-contests. As γ increases, H(T, x)

increases for all stage-1 matches, and then for all stage-2 matches, and so on.

Recall that the effective prize of each match x comprises two components, the direct

benefit of winning a prize and the indirect benefit of being promoted. By Equation 3,

the direct benefit dominates as γ increases, while the indirect benefit dominates as γ

decreases. Therefore, when γ is relatively low, the winner-take-all rule should be optimal

since the winner-take-all rule can exploit indirect benefits to the greatest extent.

3.2 Symmetric Architecture and Winner-Take-All

Although the winner-take-all rule might be sub-optimal in general, when the contest

architecture is completely symmetric, we can show that the winner-take-all rule must be

optimal. First, we define the concept of symmetric architecture.
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Definition 1. A tree architecture T is symmetric if for any two matches x and x′ in

the same stage, n(x) = n(x′).

In a symmetric K-stage T-contest, matches in stage k should have the same number

of participants (or sub-contests), denoted by Nk. All
∏K

k=1Nk homogeneous contestants

are treated fairly since their initial seats are equivalent. For the contest architecture

mentioned in Rosen (1986) and Gradstein and Konrad (1999), as well as the Wimbledon

or FIFA World Cup knockout stages, we have Nk = 2 for all k. However, we allow Nk to

be contingent on k in general. That is, Nk may differ across stages.

Theorem 1. It is optimal for the contest organizer to choose the winner-take-all prize

allocation rule when the contest architecture is symmetric.

Theorem 1 is strong since it holds regardless of the number of stages K, the number

of participants in each stage {Nk}Kk=1, or the discriminatory power γ.

We then sketch the proof. In a symmetric tree architecture, each sub-contest rooted

at a stage-k match has an identical structure. Hence, stage-k matches should have the

same H(T, x), denoted by Hk. Then, Equation 3 can be reduced to

Hk+1 =
(Nk+1 − 1)γ

Nk+1

+
Nk+1 − (Nk+1 − 1)γ

Nk+1

Hk. (4)

The former term (Nk+1−1)γ

Nk+1
represents the total effort in the stage-(k+ 1) match with the

entire prize, and the latter term represents the total effort in all Nk+1 sub-contests. In

each sub-contest, the effective prize of winning is Nk+1−(Nk+1−1)γ

N2
k+1

.

Lemma 2 helps rationalize the winner-take-all rule in symmetric contest architectures.

Lemma 2. Hk+1 > Hk.

Proof. See the Appendix.

As a result, H(T, xR) = HK > HK−1 > · · · > H1. Since xR maximizes H(T, x), by

Proposition 1, the contest organizer should allocate all prize money to the final. This

finishes the proof of Theorem 1.

As first illustrated by Fu and Lu (2012) in a nested pooling contest, the transfer from

an earlier stage of the competition to a future stage produces two effects. Similarly in a

T-contest, considering a prize transfer from a match x in stage k to its parent match p(x)
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in stage k + 1. Contestants would make more effort in p(x), which is a positive effect.

While at the same time, this reduces the payoff for the participants in x and all of the

matches before it, resulting in less effort being placed into those matches, which is referred

to as a negative effect. When the contest architecture is symmetric, the positive effect

equals (Nk+1−1)γ

Nk+1
times the transferred prize, and the negative effect equals (Nk+1−1)γ

Nk+1
Hk

times the transferred prize (see Equation 5). Since the positive effect always dominates

the negative effect (Hk < 1), the winner-take-all rule is optimal.

Hk+1 −Hk =
(Nk+1 − 1)γ

Nk+1︸ ︷︷ ︸
positive effect

− (Nk+1 − 1)γ

Nk+1

Hk︸ ︷︷ ︸
negative effect

. (5)

However, when the contest architecture is arbitrarily asymmetric, Hk is no longer

well defined and Equation 5 fails. The relative sizes of these two effects are not readily

determinable, making winner-take-all no longer necessarily optimal (Proposition 1). In

the example shown in Figure 2, if the prize is transferred from x2 to xR, the total effort

exerted in the final match after the transfer, namely the positive effect, equals γ
2
. How-

ever, the transfer reduces the effective prize of x2 from one to 2−γ
4
. Hence, the size of

the negative effect would be
(
1− 2−γ

4

)
H(T, x2) =

γ
2
(2+γ)(4−γ)

8
. Since the negative effect

dominates the positive effect, the winner-take-all rule fails.

If we replicate the sub-contest associated with x2 to match x1, the T-contest possesses

a symmetric tree architecture with eight contestants and three rounds of bilateral matches

instead. In this hypothetical architecture, the effective prize of x1 rises from zero to 2−γ
4
,

the negative effect of transferring the prize from x2 to xR would be
(
1− 2−γ

2

)
H(T, x2) =

γ
2
4γ−γ2

4
< γ

2
. Clearly, the negative effect shrinks since the hypothetical sub-contest rooted

at x1 generates extra effort. As shown by the above comparison, the asymmetry creates

unfairness among the contestants, thereby reducing the motivational effect of the final

prize on the contestants, and ultimately leading to the failure of the winner-take-all rule.

The general form of symmetric architecture, which rationalizes winner-take-all, has

never been explored in the literature. In the most recent study, Knyazev (2017) requires

all matches in the T-contest to have the same number of participants. While we allow the

number of participants in matches to vary across different stages. Moreover, according to

the result in Theorem 1, the optimality of the winner-take-all rule, which is first stated

by Rosen (1986) with 2k contestants in a k-stage pairwise elimination contest, can be
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generalized to any symmetric architecture.

3.3 Winner-Take-All in the Joint Design Problem

Another direct implication of the pivotal match principle (Proposition 1) facilitates

the optimal joint design in Section 4: Any contest architecture T whose pivotal match is

not the final is sub-optimal when the contest architecture is flexible.

Theorem 2. It is optimal for the contest organizer to choose the winner-take-all prize

allocation rule when she can jointly design the contest architecture and prize structure.

Let T (x) denote the architecture of the sub-contest whose final match is x. Obviously,

T (xR) = T . Suppose there are m contestants in the sub-contest with architecture T (xP ),

then applying the winner-take-all rule in T (xP ) will induce the same total effort as in

T with v(xP ) = 1. Based on the contest architecture T (xP ), fix the number of stages

and the number of matches in each stage, we construct T ′ by arbitrarily putting those

n−m shirking contestants into the stage-1 matches of T (xP ). Then, the effective prize

of each match in T ′ will be the same as in T (xP ) since it is solved backward. In stage 1,

T ′ will induce strictly higher effort than T (xP ) as more contestants are involved in the

competition, while the effort induced in the remaining stages remains the same.

x2

x5x4

54321

x2

x5x4

54321

Figure 3: Construction of T ′ from T

Figure 3 visualizes the above construction process starting from the 5-player example

shown in Figure 2 whose architecture is denoted by T . As shown in the left panel, the

sub-contest T (xP ) contains Contestants 2 to 5. Contestant 1 shirks. If Contestant 1 is

added into match x4, as shown in the right panel, the effort level induced in x4 increases.

So does the total effort level, suggesting that the architecture T in Figure 2 is sub-optimal.

Therefore, the total effort maximizing contest organizer should choose the final as the

pivotal match if she can freely design the contest architecture. Winner-take-all is always

14



the optimal prize structure, and the joint design problem finally boils down to the design

of optimal contest architecture given winner-take-all.

Our results, including Theorem 1 and Theorem 2, provide two rationales (symmetry

and flexibility) for the commonly assumed “winner-take-all” principle in practice.

4 Optimal Contest Architecture

In this section, we restrict our attention to the contest structure with a single prize

v(xR) = 1 to determine the optimal contest architecture that maximizes overall effort.

Rewriting TE(T, v) by setting all prizes other than v(xR) at zero yields

TE(T, vWTA) = H(T, xR) =
∑

z∈X (T )

(n(z)− 1)γ

n(z)
r(xR, z),

where vWTA denotes the winner-take-all prize allocation rule. Clearly, the optimal T-

contest architecture depends on the discriminatory level of the contest. In the remainder

of this section, we investigate noisy contests (γ < 1) and moderately discriminatory

contests (γ ≥ 1) in Section 4.1 and Section 4.2, respectively.

4.1 Noisy Contests: γ < 1

We first simplify the design problem. In particular, we find that in order to induce

the maximum effort, the number of contestants in each nontrivial match must be a prime

number. We call this contest architecture a prime-number T-contest.

Lemma 3. When γ < 1, the optimal T-contest architecture must be a prime-number

T-contest.

Proof. We prove this by contradiction: When a match includes a composite number (say,

a × b) of participants, we can split it into b matches that include a participants each,

and let those b winners compete to decide the winner of those a × b participants. This

adjustment induces a higher total effort. The details are relegated to the Appendix.

Furthermore, given any γ < 1, the number of participants in any embedded match

should not exceed a certain value. Lemma 4 formally presents the result.
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Lemma 4. When γ < 1, for any prime number p, there exists a threshold γp = 1 −
2

(p+1)(p2−2)
such that (i) when γ < γp, the number of participants in any embedded match

of all the optimal contest architectures is no more than p; (ii) when γ = γp, a T-contest

with the number of participants in any embedded match no more than p is optimal.

Proof. The proof shares a similar logic as Lemma 3. See the Appendix for details.

Note that a contest organizer should increase the number of stages as much as possible

in a noisy contest in order to induce more effort. Lemma 3 illustrates that splitting one

match into several matches with an identical number of participants always improves the

total effort level. Therefore, the optimal tree structure never includes a match with a

composite number of participants. Meanwhile, Lemma 4 demonstrates that splitting is

always beneficial to the contest designer if the size of one embedded match is sufficiently

large, regardless of whether the number of participants is a composite number.

Among prime-number T-contests, one of the most well-known contest architectures is

the binary tree architecture, as formally defined below.

Definition 2. A contest architecture T is a binary tree if n(x) ≤ 2 for all x ∈ X (T ).

Each embedded match within a binary tree architecture is either a pairwise match

(n(x) = 2) or a trivial match with only one contestant (n(x) = 1). In the latter scenario,

the contestant directly advances to the next stage through a bye.

4.1.1 Sufficiently Noisy Contests: γ ≤ 2
3

By Lemma 4, γ2 =
2
3
, the optimal architecture is just the binary tree.

Corollary 1. When γ ≤ 2
3
, the binary tree is the optimal T-contest architecture. More-

over, the optimal T-contest architecture must be a binary tree when γ < 2
3
.

We further investigate the specific architecture of the optimal binary tree, which may

not be unique. Based on the definition of F(x), i.e., the set of future matches, we further

define the number of nontrivial future matches for x as f(x) =
∑

x′∈F(x) 1(n(x
′) = 2),

which can describe the difficulty of becoming the grand champion for contestants i.

Conventional wisdom suggests that a balanced contest can better incentivize homo-

geneous contestants. When the number of contestants (n) is the power of 2, it is possible

to design a symmetric binary tree contest without byes to guarantee that f(i) is the same
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for all participants. However, when n is no longer a power of 2, it is impossible to make all

contestants have the same f(i). In this case, for balance concerns, the contest organizer

should make the number of nontrivial matches of each contestant as equal as possible.

Definition 3. A binary tree contest architecture T is balanced if

max
i∈N (T )

f(i)− min
i∈N (T )

f(i) =

0, if n is a power of 2,

1, otherwise.

(Balance Condition)

We can show that the Balance Condition can guarantee optimality.

Proposition 3. When γ ≤ 2
3
, a binary tree contest is the optimal contest architecture if

and only if it is balanced.

Proof. See the Appendix.

Consider a 6-player example. The following two tree architectures shown in Figure 4

are optimal. The number inside each nontrivial match node represents the value of f(x),

i.e., the number of nontrivial future matches. Obviously, both trees are balanced.

0

1

2

1 2

2

3 4

1

5 6

0

1

2

1 2

2

3 4

1

5 6

Figure 4: Optimal Architectures in the 6-player Example

Generally, the optimal binary tree architecture is not unique. However, we are able

to provide a specific binary tree design to guarantee that it is optimal, in which byes

only occur in the first stage (see the left panel of Figure 4). Let k be the largest integer

not exceeding log2(n). We divide n contestants into two groups: a Bye group contains

2k+1−n contestants, and a Competition group contains 2(n−2k) contestants. In stage

1, contestants in Competition group form pairwise matches and n−2k of them advance

to stage 2, contestants in Bye group advance to stage 2 automatically. From stage 2,
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2k contestants compete through k stages of pairwise matches, and the final winner is

selected and obtains the prize purse.

4.1.2 Moderately Noisy Contests: γ ∈ (2
3
, 1)

When γ ∈ (2
3
, 1), we are not able to determine the closed-form optimal contest ar-

chitecture in general. Nevertheless, we can efficiently solve for the optimal architecture

through dynamic programming, which also applies to the cases with γ ∈ (0, 2
3
]∪ [1, n

n−1
).

The correctness of dynamic programming stems from subgame optimality. Consider

that the number of players in the final match is s, and n contestants are divided into s

groups.9 Assuming the τth group has λτ contestants, then the winner of the group final

xτ should be selected by the optimal contest architecture with λτ contestants.

The efficiency of dynamic programming is guaranteed by Lemma 4. Since γp is mono-

tonically increasing in prime number p and converges to one, for any γ ∈ (2
3
, 1), we can

always find a minimum prime number q(γ) such that γ < γq. Hence, the number of

participants in each match must be a prime number that is bounded from above.

Given the number of contestants (n), let Λ(n, γ) = ⟨s,λ⟩ denote the design of the

final match. A s-dimensional non-ascending vector λ collects the number of contestants

involved in s sub-contests. Namely, λ = (λ1, · · · , λs), λτ ≥ λτ+1, and
∑s

τ=1 λτ = n.

Therefore, the total effort of the final match is (s−1)γ
s

, and the effective prize of partici-

pating in the final competition is s−γ(s−1)
s2

. Let Λ∗(n, γ) denote the optimal design of the

final match, and TE∗(n, γ) denote the optimized total effort. In the sub-contest with λτ

contestants, the induced total effort is just s−γ(s−1)
s2

TE∗(λτ , γ).

Proposition 4. Given TE∗(n̂, γ) for n̂ = 1, · · · , n − 1, the optimal design of the final

match Λ∗(n, γ) = ⟨s∗,λ∗⟩ is determined by

Λ∗(n, γ) = arg max
Λ=⟨s,λ⟩


(s− 1)γ

s︸ ︷︷ ︸
Efforts in Final

+
s− γ(s− 1)

s2

s∑
τ=1

TE∗(λτ , γ)︸ ︷︷ ︸
Efforts in s Sub-contests

 (6)

9The number of finalists is denoted by n(xR) in our previous analysis. However, for the sake of
simplicity and clarity, we use s instead throughout designing contest architecture.
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where λτ is the τ th entry in λ. The total effort induced by the optimal architecture is

TE∗(n, γ) = max
⟨s,λ⟩

{
(s− 1)γ

s
+

s− γ(s− 1)

s2

s∑
τ=1

TE∗(λτ , γ)

}
. (7)

Having derived the optimal design Λ∗(n̂, γ) for each n̂ = 1, · · · , n, we can recover the

optimal contest architecture recursively by unfolding the architecture layer by layer.

Consider a 10-player example with γ = 0.9. We sequentially derive the optimal design

of the final match with n̂ = 1, · · · , 10 contestants, as listed in Table 2. The last row of

Table 2 shows that two contestants participate in the final when n = 10: One is selected

from a sub-contest with 4 contestants, and the other is chosen from a sub-contest with 6

contestants, as shown in Figure 5(a). Furthermore, based on the optimal tree architecture

with n = 4 and n = 6, we can pin down the final of these two sub-contests, which is

the sub-final of the original contest, as shown in Figure 5(b). Finally, we know that the

optimal contest architecture is simultaneous when n = 2 or 3. Hence, we have recovered

the optimal contest architecture according to Table 2, as shown in Figure 5(c).

n = s∗ λ∗ Total Effort n = s∗ λ∗ Total Effort
3 3 (1, 1, 1) 0.6000 7 2 (4, 3) 0.8068
4 2 (2, 2) 0.6975 8 2 (4, 4) 0.8336
5 2 (3, 2) 0.7387 9 2 (5, 4) 0.8450
6 2 (3, 3) 0.7800 10 2 (6, 4) 0.8563

Table 2: A 10-player Example for Dynamic Programming

4 6

(a)

2 2 3 3

(b) (c)

Figure 5: Recovering Optimal Contest Architecture when γ = 0.9 and n = 10

4.1.3 An Upper Bound of TE∗(n, γ)

We can use the recursive formula for TE∗(n, γ) (Equation 7), derived from dynamic

programming, to provide an upper bound for the total effort level with γ < 1. This upper
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bound is quite tight since as n grows, (i) the difference between the bound and TE∗(n, γ)

converges to 0, and (ii) the bound can be reached infinitely many times.

Lemma 5. When γ < 1, TE∗(n, γ) ≤ 1− (1− γ
2
)log2 n. Equality holds if and only if n is

a power of 2.

Proof. We can prove this proposition by induction.

Base Case. When n = 2, the total effort induced is γ
2
. The equality holds.

Induction Process. Assume thatTE∗(n̂, γ) ≤ 1−(1− γ
2
)log2 n̂ holds for n̂ = 1, · · · , n−1.

For simplicity, we define the contestant surplus: CS∗(n, γ) ≜ 1−TE∗(n̂, γ). Then,

CS∗(n, γ) = min
⟨s,λ⟩

{[
1− (s− 1)γ

s

]
1

s

s∑
τ=1

CS∗(λτ , γ)

}

≥ min
⟨s,λ⟩

{[
1− (s− 1)γ

s

][
1

s

s∑
τ=1

(1− γ

2
)log2 λτ

]}
,

where the inequality holds by induction hypothesis.

Step 1. We aim to show that 1
s

∑s
τ=1(1−

γ
2
)log2 λτ ≥ (1− γ

2
)log2

n
s .

Consider (1− γ
2
)log2 n as a function of n. It is convex since the second-order derivative

ln(1− γ
2
)

(n ln 2)2
(1− γ

2
)log2 n

[
ln(1− γ

2
)− ln 2

]
> 0. According to Jensen’s inequality, we have

1

s

s∑
τ=1

(1− γ

2
)log2 λτ ≥ (1− γ

2
)log2

∑s
τ=1 λτ

s = (1− γ

2
)log2

n
s .

Here, equality holds if and only if λ1 = λ2 = · · · = λτ = n
s
and n

s
is an integer.

Step 2. We aim to show that 1− (s−1)γ
s

≥ (1− γ
2
)log2 s. Equality holds if and only if

s = 2. The details are relegated to the Appendix.

With the above two inequalities, we immediately have

[
1− (s− 1)γ

s

][
1

s

s∑
τ=1

(1− γ

2
)log2 λτ

]
≥ (1− γ

2
)log2 s(1− γ

2
)log2

n
s = (1− γ

2
)log2 n.

Here, equality holds if and only if s = 2, λ1 = λ2 =
n
2
, and n

2
is an integer.

Therefore, CS∗(n, γ) ≥ (1− γ
2
)log2 n and thus TE∗(n, γ) ≤ 1− (1− γ

2
)log2 n. Equality

holds if and only if (i) s = 2, (ii) λ1 = λ2 =
n
2
, (iii) n

2
is an integer, and (iv) equality also

holds for n
2
.

When a certain contest architecture can reach the upper bound, it must be optimal.
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The upper bound in Lemma 5 is tight when n is a power of 2, where the optimal contest

architecture is a symmetric (balanced) binary tree with log2 n stages.

Proposition 5. When γ < 1 and n is a power of 2, the symmetric binary tree contest

is the unique optimal contest architecture.

For the 10-player example with γ = 0.9 in Table 2, we compare the total effort and

the upper bound, and summarize them into Table 3. When n ≥ 6, the total effort is

lower than the upper bound by < 1%, indicating that the bound is quite accurate.

n = TE∗(n, 0.9) Upper Bound Gap n = TE∗(n, 0.9) Upper Bound Gap
3 0.6000 0.6123 0.0123 7 0.8068 0.8133 0.0065
4 0.6975 0.6975 0 8 0.8336 0.8336 0
5 0.7387 0.7504 0.0117 9 0.8450 0.8497 0.0047
6 0.7800 0.7868 0.0068 10 0.8563 0.8628 0.0065

Table 3: A 10-player Example for the Upper Bound

4.1.4 Comparisons with Gradstein and Konrad (1999)

In Section 4.1, we study the optimal contest architecture under the winner-take-all

rule when γ < 1. This topic is initially explored by Gradstein and Konrad (1999).

They suggest that for γ < 1, the optimal contest architecture is a binary tree. By

contrast, Proposition 3 in this paper demonstrates that when γ < 2
3
, the optimal contest

architecture is indeed a binary tree. If γ ∈ [2
3
, 1), it is possible that contest architectures

other than a binary tree may be optimal. Notably, we prove that the threshold 2
3
is tight.

On one hand, the threshold is no less than 2
3
by Corollary 1. On the other hand, we can

construct a scenario in which contest architecture other than binary tree is optimal when

γ = 2
3
.

The discrepancy arises from limitations in Gradstein and Konrad (1999)’s proof

methodology. Specifically, their approach involves three key steps: first, for a given num-

ber of stages, they insist on an equal number of contestants in each embedded match;

second, they express the total effort as a function of the stage number; third, they opti-

mize the number of stages, ultimately concluding that more stages are optimal to induce

higher effort, hence suggesting a binary tree architecture as ideal for T-contests.

During their analysis, they relax the assumption that the number of participants in

each match must be an integer. If the group size is g in the match x, the total effort
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induced is still assumed to be (g−1)γ
g

v̂(x), even if g is no longer an integer. However, this

relaxation is a loss of generality. Given the number of stages, it is generally impossible to

construct a contest architecture with the same group size across all embedded matches.

Consequently, this loss of generality leads to different results.10

Note that the optimal solution in a relaxed optimization problem must be optimal

in the original problem if it meets the condition being dropped. Under the context of

designing contest architecture, when n is a power of 2, the dropped integer constraint is

satisfied. Hence, we anticipate that Gradstein and Konrad (1999)’s claim is valid if n

is a power of 2, which can be corroborated by Proposition 5. Our proof methodology,

rooted in dynamic programming and mathematical induction, boasts two advantages

over their proof. First, our concise proof in Lemma 5 derives the upper bound directly

from the Bellman equation, bypassing the reliance on specific contest architectures and

significantly simplifying the proof. Second, for rigorous concerns, the integer constraints

on the group size and the stage number are fully considered in our proof.

4.2 Relatively Discriminatory Contests: γ ≥ 1

For γ ≥ 1, the optimal contest architecture is a simultaneous contest. When γ >

1, it is the unique optimal one. In doing so, we use the induction method to show

that simultaneous contest is optimal for n = 2, 3, · · · , using the dynamic programming

iteration formula Equation 7.

Proposition 6. When γ > 1, TE∗(n, γ) = n−1
n
γ, and the simultaneous contest is the

unique optimal T-contest architecture.

Proof. We can prove this proposition by induction. See the Appendix for details.

We now explain why we should gather all contestants in a grand static contest. Since

the effective prize in each match is merely the equilibrium payoff of its parent match, a

higher equilibrium payoff indicates a higher efficiency of adopting multi-stage contests.

In a Tullock contest, the total effort of a match increases with the discriminatory power,

10For example, in a three-player contest, a completely symmetric binary tree architecture does not
exist. Instead, there are two possible contest architectures: a simultaneous contest and an asymmetric
binary tree contest. In the binary tree contest, the winner between two contestants contends with the
third contestant for the championship. The total effort in simultaneous contest is 2γ

3 , and in the binary

tree contest is γ
2 + 2−γ

4
γ
2 . The binary tree contest is optimal only if γ ≤ 2

3 .
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while the resulting equilibrium payoff decreases. Therefore, the stage number should be

fixed at one when the contest is relatively discriminatory.

Proposition 6 is not new in the literature. Gradstein and Konrad (1999) first state that

when the discriminatory power γ ≥ 1, the optimal contest is a simultaneous contest. We

provide an alternative approach, grounded on dynamic programming and mathematical

induction, to reach the same result.

5 Concluding Remark

This paper studies the optimal joint design of contest architecture and prize structure

in T-contests. We pin down the optimal contest rule through two steps. First, we present

the pivotal match principle to rationalize the winner-take-all rule. Second, we characterize

the optimal contest architecture under the winner-take-all rule.

Our benchmark analysis considers a linear effort cost and homogeneous contestants.

As well-documented in the literature, it is challenging to relax these two assumptions.

Yet, in Appendix B, we discuss these two assumptions. Another possible direction is

allowing multiple contestants to advance to the next stage in each embedded match,

which can be viewed as a combination of T-contests and pooling elimination contests.

Subsequently, a second prize could be assigned to the runner-up of a single match.

Our analysis also raises the question of shortlisting, a significant issue that is over-

looked in multi-stage contest designs. In the shortlisting problem, the contest organizer

precludes a subset of contestants and applies the winner-take-all rule. Contrary to the

conventional wisdom that shortlisting is detrimental to eliciting effort, our study implies

that shortlisting is beneficial when the T-contest is unbalanced. Although the theoret-

ical approach of this study contributes to the shortlisting problem (see Appendix B for

our analysis), the full characterization of optimal shortlisting is beyond the scope of this

study, and a comprehensive investigation should be attempted in future research.

A Proofs

Proof of Lemma 1. We prove Lemma 1 by induction. Let h(x) denote the stage number

of match x, then h(xR) is the total number of stages. We further let d(x) = h(xR)−h(x),
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which is the remaining stages left after match x.

Let Dk(T ) denote the set of matches with d(x) = k, namely Dk(T ) = {x ∈ X (T ) :

d(x) = k}. Then, D0(T ) = {xR} and D1(T ) = {x : p(x) = xR}. For any x ∈ Dk(T ), given

the effective prizes v̂(x), the equilibrium effort of each contestant in match x is given by

e∗(x) = (n(x)−1)γ
n(x)2

v̂(x). Then, we can further calculate the effective prizes of matches in

Dk+1(T ). This induction process consists of several stages that start at the base case

k = 0.

Base Case. After the final, the winner will take the prize and the contest is over. So

the effective prize of the final is just v(xR). Any contestant who advances to the final will

exert a level of effort e∗(xR) =
(n(xR)−1)γ

n(xR)2
v̂(xR). Therefore, Lemma 1 holds for the final

match D0.

Induction Process. Assume Lemma 1 holds for all matches in Dk. Let x ∈ Dk+1 and

hence p(x) ∈ Dk. By induction assumption, the equilibrium individual effort level in

match p(x) is e∗(p(x)) = (n(p(x))−1)γ
n(p(x))2

v̂(p(x)) for all n(p(x)) contestants, and each contes-

tant wins match p(x) with probability 1
n(p(x))

. Hence, the expected payoff of participat-

ing match p(x), i.e., 1
n(p(x))

v̂(p(x)) − e∗(p(x)), is the indirect benefit of winning match

x. According to the definition of r(x′, x), r(p(x), x) = n(p(x))−(n(p(x))−1)γ
n(p(x))2

and for any

x′ ∈ F(p(x)),

r(x′, x) = r(x′, p(x)) · r(p(x), x) = n(p(x))− (n(p(x))− 1)γ

n(p(x))2
r(x′, p(x)).

Then, v̂(x) can be obtained in the following way,

v̂(x) = v(x)+

[
1

n(p(x))
v̂(p(x))− e∗(p(x))

]
︸ ︷︷ ︸
Indirect benefit of winning match x

= v(x)+r(p(x), x)v̂(p(x)) = v(x)+
∑

x′∈F(x)

r(x′, x)v(x′).

Proof of Lemma 2. We first prove that Hk < 1 by the induction method. It is apparent

thatH1 < 1. IfHk < 1, thenHk+1 <
(Nk+1−1)γ

Nk+1
+Nk+1−(Nk+1−1)γ

Nk+1
= 1. Finally, Hk+1−Hk =

(Nk+1−1)γ

Nk+1
(1−Hk) > 0, which finishes the proof.

Proof of Lemma 3. According to the pivotal match principle, we only need to focus on the

winner-take-all prize allocation rule. Consider the sub-contest with final match x, denoted

by T (x). If applying the winner-take-all rule on T (x) induces total effort α ∈ [0, 1), then
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the total effort induced in sub-contest T (x) in the original architecture T with the winner-

take-all rule should be αv̂(x), where α can be defined as the rent dissipation rate of

sub-contest T (x).

We prove Lemma 3 by contradiction. Assume the contest architecture T is optimal

and there exists one match z ∈ X (T ) in the kth stage such that n(z) is not a prime

number. Then n(z) can be decomposed into the product of two integers greater than 1,

i.e., n(z) = ab, where a, b > 1. Denote those n(z) matches whose parent match is z in

T as x1, · · · , xn(z). That is, in stage k, the winner of matches x1, · · · , xn(z) advances to

match z. Then, we could adjust the contest architecture T by adding an additional stage

between stages k − 1 and k as follows:

1. Divide winners of x1, · · · , xn(z) into b matches of a members each. The members

in each match compete with each other, and the winners of those b matches form

a new match, which is denoted by z′. They compete with each other in stage k to

advance further.

2. Winners of matches in stage k − 1 excluding x1, · · · , xn(z) are advanced to stage k

directly.

3. In stage k + 1, all the matches are the same as before, except the winner of match

z is replaced by z′.

4. All other stages remain unchanged.

Thus, we get a new contest architecture T ′.

In the following, we will show TE(T |vWTA) < TE(T ′|vWTA), which is equivalent to

proving TE(T (z)|vWTA) < TE(T (z′)|vWTA).

Clearly,

TE(T (z)|vWTA) =
γ(ab− 1)

ab
+

ab− γ(ab− 1)

a2b2

n(z)∑
i=1

αi,

where αi = TE(T (xi)|vWTA) is a constant in [0, 1).

Similarly,

TE(T (z′)|vWTA) =
γ(b− 1)

b
+

b− γ(b− 1)

b

γ(a− 1)

a
+

a− γ(a− 1)

a2
b− γ(b− 1)

b2

n(z)∑
i=1

αi.

Then

TE(T (z′)|vWTA)−TE(T (z)|vWTA) =
γ(1− γ)(a− 1)(b− 1)

a2b2

ab−
n(z)∑
i=1

αi

 > 0,

which contradicts to the optimality of T .
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Therefore, the optimal T-contest must be a prime-number T-contest.

Proof of Lemma 4. The main logic of this proof is similar to the proof of Lemma 3.

Assume the contest architecture T is optimal and there exists one match z ∈ N (T ) in

the kth stage such that n(z) = q is an odd prime number. Denote those q matches

whose parent match is z as x1, · · · , xq. As in the proof of Lemma 3, define αi as the rent

dissipation rate of match xi. Without loss of generality, we assume α1 ≤ α2 ≤ · · · ≤ αq.

Then we could adjust contest architecture T by adding an additional stage between stages

k − 1 and k as follows:

1. Group winners of matches x1, · · · , x q+1
2

together in a new match, which is denoted

by y1, and group winners of matches x q+3
2
, · · · , xq together in another new match,

which is denoted by y2. The winners of matches y1 and y2 form a new match, which

is denoted by z′, and they compete with each other in stage k to advance further.

2. The winners of matches in stage k − 1 excluding x1, · · · , xq are advanced to stage

k directly.

3. In stage k + 1, all the matches are the same as before, except the winner of match

z is replaced by z′.

4. All other stages remain unchanged.

Thus, we obtain a new contest architecture T ′.

Let p denote a prime number that is strictly lower than q. Then, we need to show that

when γ < γp = 1− 2
(p+1)(p2−2)

, the match with q participants could not be optimal. That is

to prove TE(T |vWTA) < TE(T ′|vWTA), which is equivalent to proving TE(T (z)|vWTA) <

TE(T (z′)|vWTA).

Clearly,

TE(T (z)|vWTA) =
γ(q − 1)

q
+

q − γ(q − 1)

q2

q∑
i=1

αi,

TE(T (z′)|vWTA) =
γ

2
+

2− γ

4

γ(q − 1)

q + 1
+

2− γ

2

q + 1− γ(q − 1)

(q + 1)2

q+1
2∑

i=1

αi

+
2− γ

4

γ(q − 3)

q − 1
+

2− γ

2

q − 1− γ(q − 3)

(q − 1)2

q∑
i= q+3

2

αi.
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Then we have

TE(T (z′)|vWTA)−TE(T (z)|vWTA) = C0 + C1

q+1
2∑

i=1

αi + C2
q∑

i= q+3
2

αi,

where C0 = γ(1−γ)
2

−γ(1−γ)q2+γ
(q2−1)q

, C1 = −
γ(1−γ)

2
(q−1+

γ(1+γ)
2

)+(1−γ)q+γ

(q+1)2q
< 0 and C2 = 2−γ

2
q−1−γ(q−3)

(q−1)2
−

q−γ(q−1)
q2

.

Since q ≥ p+ 1 and hence p ≤ q − 1, then γ < 1− 2
(p+1)(p2−2)

≤ 1− 2
q(q2−2q−1)

, which

implies that C0 > 0.

• If C2 ≤ 0, then

C0 + C1

q+1
2∑

i=1

αi + C2
q∑

i= q+3
2

αi > C0 + C1
q + 1

2
+ C2

q − 1

2
= 0.

• If C2 > 0, let some α ∈ [α q+1
2
, α q+3

2
], then

C0 + C1

q+1
2∑

i=1

αi + C2
q∑

i= q+3
2

αi > C0 + C1
q + 1

2
α + C2

q − 1

2
α.

Note that C0 + C1 q+1
2
α+ C2 q−1

2
α is linear with α. It is strictly positive for any α ∈

[0, 1) since C0+C1 q+1
2
α+C2 q−1

2
α = C0 > 0 when α = 0 and C0+C1 q+1

2
α+C2 q−1

2
α = 0

when α = 1.

Therefore, we can conclude that TE(T (z′)|vWTA)−TE(T (z)|vWTA) > 0.

When γ = 1− 2
(p+1)(p2−2)

, we have C0 ≥ 0 and TE(T (z′)|vWTA)−TE(T (z)|vWTA) ≥ 0.

Proof of Proposition 3. Given the winner-take-all rule, the effective prize v̂(x) in Lemma 1

can be simplified as v̂(x) = r(xR, x) =
(
2−γ
4

)f(x)
, and TE(x|T, v) = (n(x)−1)γ

n(x)

(
2−γ
4

)f(x)
,

where n(x) = 1 or 2 and f(x) denotes the number of nontrivial future matches.

Let Xm = {x ∈ X (T ) : n(x) = 2, f(x) = m} denote the set of nontrivial matches

whose number of nontrivial future matches is m. Clearly, TE(x|T, v) > 0 if and only if

n(x) = 2 and x belongs to some Xm. Then, we can calculate TE(T, v) by summing all

TE(x|T, v) over different values of f(x):

TE(T, v) =
∑

x∈X (T )

(n(x)− 1)γ

n(x)

(
2− γ

4

)f(x)

=
∞∑

m=0

γ

2

(
2− γ

4

)m

|Xm|, (8)

which can be viewed as a linear function of {|Xm|}∞m=0. We further impose three linear

constraints on {|Xm|}∞m=0:

27



• Nonnegativity. |Xm| ≥ 0 for all m.

• Binarity. |X0| ≤ 1 and |Xm+1| ≤ 2|Xm|. The former holds since the final match

is unique. The latter holds since the winner of each match in Xm+1 must take part

in a match in Xm in the future and the matches in Xm only have 2|Xm| contestants

altogether.

• Regularity.
∑∞

m=0 |Xm| = n − 1. On the one hand, each nontrivial match must

belong to exactly one Xm. On the other hand, the total number of nontrivial

matches should be n− 1 since each nontrivial match eliminates one contestant.

Therefore, the optimization problem is a linear programming problem with decision

variables {|Xm|}∞m=0, and the sum of |Xm| is fixed by regularity. Note that in Equation 8,

the coefficient of variable |Xm| decreases withm. Therefore, let k be the largest integer not

exceeding log2(n), in order to maximize Equation 8, we need to make Xm with a smaller

m(≤ k) as large as possible so that the binarity constraints are binding. Combined with

the regularity constraint, we can derive the unique optimal solution of Equation 8:

|Xm| = 2m,∀m ≤ k − 1, |Xk| = n− 2k, |Xm| = 0,∀m > k. (9)

Let Nm denote the set of contestants whose number of nontrivial future matches is

m: Nm = {i ∈ N (T ) : f(i) = m}. Then, for those participants of matches in Xm, they

either advance all through byes in previous matches, which belong to Nm+1, or experience

another nontrivial match prior to this match, namely, the winners of matches in Xm+1.

Note that each match in Xm has two participants; hence, we have the following equality

2|Xm| = |Xm+1|+ |Nm+1|.

Therefore, we can derive {|Nm|}∞m=0 from {|Xm|}∞m=0.

Only if. By Equation 9, we have |Nk| = 2k+1 − n, |Nk+1| = 2(n − 2k), and |Nm| =

0,∀m ̸= k, k + 1, where k is the largest integer not exceeding log2(n). The contest is

balanced.

If. Assume there exists an integer k such that for all natural numbers m ̸= k, k + 1,

|Nm| = 0. Then, based on the relationship 2|Xm| = |Xm+1|+ |Nm+1|, we can obtain

1. For all m ≥ k+1, |Xm| = 2m−(k+1)|Xk+1|. To ensure the regularity condition, |Xk+1|

must be zero and hence |Xm| = 0 for all m ≥ k + 1.
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2. For all m ≤ k−1, |Xm| = 2m|X0| = 2m, and |Xk| = 2k−|Nk|. By regularity, we can

conclude that k is the largest integer not exceeding log2(n) and |Nk| = 2k+1 − n.

Then, we recover the condition in Equation 9.

Proof of Lemma 5. It remains to prove the following inequality,

1− (s− 1)γ

s
≥ (1− γ

2
)log2 s. (10)

Let η = log2 s ∈ [1,∞) and t = 1 − γ ∈ (0, 1). Then, proving Equation 10 is equivalent

to prove 2ηt− t+ 1 ≥ (1 + t)η. By Taylor expansion, we have (1 + t)η = 1 +
∑∞

i=1

(
η
i

)
ti,

where
(
η
i

)
is generalized binomial that is defined by

(
η
i

)
= η(η−1)···(η−i+1)

i(i−1)···1 . In particular,

2η = 1 +
∑∞

i=1

(
η
i

)
and thus 2ηt− t+ 1 = 1 +

∑∞
i=1

(
η
i

)
t. Hence, it remains to prove

∞∑
i=1

(
η

i

)
t ≥

∞∑
i=1

(
η

i

)
ti. (11)

Let ⌊η⌋ be the largest integer no more than η. When i ≤ ⌊η⌋,
(
η
i

)
≥ 0 and thus(

η
i

)
ti ≥

(
η
i

)
t because t ∈ (0, 1), and the equality holds if and only if i = 1. We then move

to those terms with i > ⌊η⌋. For l ≥ 0, we consider two consecutive terms, i = ⌊η⌋+2l+1

and i = ⌊η⌋+ 2l + 2. On the right-hand side of Equation 11,

(
η

⌊η⌋+ 2l + 1

)
t⌊η⌋+2l+1 +

(
η

⌊η⌋+ 2l + 2

)
t⌊η⌋+2l+2

=

(
η

⌊η⌋+ 2l + 1

)
t⌊η⌋+2l+1 − ⌊η⌋+ 2l + 1− η

⌊η⌋+ 2l + 2

(
η

⌊η⌋+ 2l + 1

)
t⌊η⌋+2l+2

=

(
η

⌊η⌋+ 2l + 1

)(
t⌊η⌋+2l+1 − ⌊η⌋+ 2l + 1− η

⌊η⌋+ 2l + 2
t⌊η⌋+2l+2

)

Similarly, on the left-hand side of Equation 11,

(
η

⌊η⌋+ 2l + 1

)
t+

(
η

⌊η⌋+ 2l + 2

)
t =

(
η

⌊η⌋+ 2l + 1

)(
t− ⌊η⌋+ 2l + 1− η

⌊η⌋+ 2l + 2
t

)

Notice that
(

η
⌊η⌋+2l+1

)
≥ 0, and the equality holds if and only if η is an integer. Further-

more,

0 < t⌊η⌋+2l+1−⌊η⌋+ 2l + 1− η

⌊η⌋+ 2l + 2
t⌊η⌋+2l+2 < t⌊η⌋+2l+2

(
1− ⌊η⌋+ 2l + 1− η

⌊η⌋+ 2l + 2

)
< t−⌊η⌋+ 2l + 1− η

⌊η⌋+ 2l + 2
t.
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This ends the proof of Equation 11:

∞∑
i=1

(
η

i

)
ti =

⌊η⌋∑
i=1

(
η

i

)
ti +

∞∑
l=0

{(
η

⌊η⌋+ 2l + 1

)
t⌊η⌋+2l+1 +

(
η

⌊η⌋+ 2l + 2

)
t⌊η⌋+2l+2

}

≤
⌊η⌋∑
i=1

(
η

i

)
t+

∞∑
l=0

{(
η

⌊η⌋+ 2l + 1

)
t+

(
η

⌊η⌋+ 2l + 2

)
t

}
=

∞∑
i=1

(
η

i

)
t.

Equality holds if and only if η is an integer and ⌊η⌋ < 2, suggesting that η = 1 and s = 2.

Proof of Proposition 6. Base Case. When n = 2, the total effort induced is γ
2
. The

simultaneous contest is the only well-defined contest architecture.

Induction Process. Assume thatTE∗(n̂, γ) = n̂−1
n̂
γ holds for n̂ = 1, · · · , n−1. We need

to prove that TE∗(n, γ) = n−1
n
γ. Replacing TE∗(λτ , γ) by

λτ−1
λτ

γ (induction hypothesis)

in Equation 7, we have

TE∗(n, γ) = max
⟨s,λ⟩

{
(s− 1)γ

s
+

s− γ(s− 1)

s2

s∑
τ=1

λτ − 1

λτ

γ

}
.

Since the total effort level of n−1
n
γ can be reached by the simultaneous contest, it

remains to prove that any other design of the final match can not exceed this level,

∀⟨s,λ⟩, (s− 1)γ

s
+

s− γ(s− 1)

s2

s∑
τ=1

λτ − 1

λτ

γ ≤ n− 1

n
γ.

Since λ−1
λ

is concave in λ, 1
s

∑s
τ=1

λτ−1
λτ

≤ n/s−1
n/s

= n−s
n

by Jensen’s inequality. Thus, it

remains to show that (s−1)γ
s

+ s−γ(s−1)
s

n−s
n
γ ≤ n−1

n
γ. The inequality can be rearranged as

γ(1
s
− 1

n
)(s− 1)(1− γ) ≤ 0. Since s ∈ [1, n] and γ ≥ 1, this inequality holds.

B More Discussions

B.1 Shortlisting

In the short run, the contest organizer may not be able to adjust the tree architecture.

Section 3 thus considers a reduced-form design problem that allows prize design only. We

now consider another short-term design problem that allows the organizer to shortlist a
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subset of the contestants to participate under the winner-take-all rule.

Note that if the pivotal match is not the final match, namely xP ̸= xR, those con-

testants whose future match is not xP will make zero effort. In this case, the contest

organizer can be strictly better off by excluding contestants that are not in T (xP ), pro-

vided that the entire prize goes to the top position.11 We obtain the following.

Proposition 7. Given the contest architecture T and the winner-take-all rule, excluding

all contestants that are not in T (xP ) can strictly increase the total effort when the pivotal

match xP in the original architecture is not the final match.

The conventional wisdom holds that a contest elicits higher bids when it involves more

contestants. However, there exist studies pointing out that shortlisting can heat up the

competition (Che and Gale, 2003, Fu, Jiao and Lu, 2015). Under the winner-take-all prize

allocation rule, Proposition 7 reveals that shortlisting could be a better choice in some

T-contests, which coincides with previous studies. Our result thus provides an alternative

rationale for excluding contestants in contests with tree architecture.

However, excluding all contestants that are not in T (xP ) is not necessarily optimal.

Consider a contest architecture Tshort consisting of three sub-contests, as shown in the left

panel of Figure 6: the first sub-contest (rooted at x1) consists of only one contestant; the

second sub-contest (rooted at x2) consists of 2
k contestants through k stages of bilateral

matches; and the third sub-contest (rooted at x3) consists of 2
k−1 contestants through k

stages of bilateral matches. With a sufficiently large k and discriminatory power γ < 2
3
,

the pivotal match xP is x2. However, removing the first sub-contest (the right panel of

Figure 6) is better than retaining T (x2) only. Moreover, shortlisting may still be profitable

even if the pivotal match is already the final match. Consider the same architecture Tshort

with small k and γ, in this case, the pivotal match is the final match, and removing the

first sub-contest will make the contest organizer strictly better off.

Furthermore, following the same construction process when proving Theorem 2, putting

those shirking contestants into the stage 1 matches of T (xP ) will increase the total effort.

Hence, the total effort level induced in the short term by shortlisting must not exceed

the level induced in the long run under joint design in our baseline setting.

11For the organizational example introduced before, shortlisting corresponds to reducing the staff or
streamlining the organizational structure.
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Figure 6: Shortlisting

Corollary 2. Given the number of contestants and the winner-take-all rule, shortlisting

cannot increase the total effort when contest architecture can be freely adjusted.

B.2 Contestant Heterogeneity

Our paper assumes homogeneous players, which enables a tractable analysis but limits

the scope of the study. Considering heterogeneous contestants is technically challenging

for the following reasons. First, the equilibrium characterization of a single match with

more than two contestants is intractable under Tullock contest technologies. Moreover,

since part of the contestants may exert zero effort, it is likely that boundary (corner)

solutions widely exist, which makes equilibrium characterization more difficult.12

Second, the subgame perfect equilibrium in each sub-contest is no longer well defined.

Since each contestant is not sure of the capability of their future opponents, he could only

adopt a contingent strategy depending on the realization of future opponents. Clearly,

the distribution of participants is jointly determined by the strategies of all contestants

that advance to the match. So do the effective prizes. Therefore, the equilibrium strategy

of each contestant in match x depends not only on his own position in the contest ar-

chitecture but also on the probability distribution of his opponents in the current match

and all future matches. These strategies are intertwined in such a complex way that they

lose the subgame optimality property as in the baseline analysis.13

Third, when contestants are heterogeneous, the optimal contest design also contains

seeding—the initial assignment of contestants in the tree architecture. However, taking

seeding as the unique design instrument is already complicated enough for analytical

12Cornes and Hartley (2005) and Ryvkin (2013) investigate the properties of a simultaneous Tullock
contest with heterogeneous players. Gurtler and Kräkel (2010) and Parreiras and Rubinchik (2006)
consider tournament settings with heterogeneous agents.

13In a two-stage lottery rent-seeking group contest, Stein and Rapoport (2004) study k(≥ 2) groups
with asymmetric valuations of the rent (the members within each group are homogeneous) and compare
the contest structures of Between-Group and Semi-Finals models.
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results. The existing literature is limited to the discussion of the two-stage competition.

Groh et al. (2012) study optimal seeding with four heterogeneous participants in an all-

pay auction. Stracke (2013) studies the case of four players of two types, and compares the

equilibrium results between a static one-stage contest and a dynamic two-stage contest.

The experimental work done by Hörtnagl et al. (2013) further explores how heterogeneity

in contestants’ investment costs affects competition intensity in a two-stage contest.

Nevertheless, the expected total effort in equilibrium is approximately unchanged

after averaging the marginal costs of weakly heterogeneous players. Ryvkin (2009) argues

that weak heterogeneity is a more reasonable assumption than arbitrary heterogeneity

under an evolutionary perspective.14 Moreover, Fang, Noe and Strack (2020) claim that

preselected contestants, such as employees who all passed employment screening tests, can

be treated as homogeneous players. We simply follow their assumption of homogeneity.

B.3 Nonlinear Costs

The previous literature points out that the optimal contest design often depends on

the shape of contestants’ effort cost curves in dynamic contests (e.g., Moldovanu and

Sela (2001)). In this section, we relax the assumption of linear effort cost functions and

investigate the impact of the curvature of cost functions on the optimal design scheme.

Consider a power form cost function c(e) = eβ with β > 0. Therefore β > 1 (β = 1

or β < 1) implies increasing (constant or decreasing) marginal cost of effort. Similar

to Lemma 1, the subgame perfect Nash equilibrium of the T-contest is unique, and the

equilibrium effort of each contestant in match x ∈ X (T ) is e∗(x) =
(

γ
β
n(x)−1
n(x)2

v̂(x)
)1/β

,

where v̂(x) = v(x) +
∑

x′∈F(x) r(x
′, x)v(x′) denotes the effective prize of match x, and

r(x′, x) =
∏

z∈F(x)\F(x′)

[
n(z)− γ

β
(n(z)−1)

n(z)2

]
denotes the coefficient of v(x′) for x′ ∈ F(x).

Furthermore, we can extend r(x′, x) in a similar way as Equation 2: define r(x′, x) = 1

if x′ = x, and r(x′, x) = 0 if x′ /∈ {x} ∪ F(x). Therefore, given the contest architecture

T , the total effort induced by prize structure v is

TE(T, v) =
∑

x∈X (T )

n(x)

 ∑
x′∈X (T )

γ

β

n(x)− 1

n2(x)
r(x′, x)v(x′)

1/β

. (12)

14Ryvkin (2009) studies a binary elimination contest with weakly heterogeneous players. It shows that
the expected total effort in equilibrium under linear approximation remains unchanged after averaging
their marginal costs. Similarly, weak heterogeneity will not alter the main results of our paper.
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B.3.1 Pivotal Match or Prize Splitting?

Given the contest architecture T , the total effort is a quasi-convex function of {v(x)}x∈X (T )

when β ≤ 1.15 Since the domain of {v(x)}x∈X (T ) is a simplex, the maximum point must

be located at a vertex, which validates the pivotal match principle.

Proposition 8. When β ≤ 1, (i) Given the contest architecture T , the optimal prize

structure is v∗(xP ) = 1, where xP maximizes
∑

z∈X (T ) n(z)
(

γ
β
n(z)−1
n(z)2

r(x, z)
)1/β

. (ii) It is

optimal for the contest organizer to choose the winner-take-all prize allocation rule when

she can jointly design the contest architecture and prize structure.

Proof. (i) We first show that TE(T, v)β is a convex function with respect to v, i.e., for

any θ ∈ (0, 1), TE(T, θv1 + (1− θ)v2)
β ≤ θTE(T, v1)

β + (1− θ)TE(T, v2)
β.

Let H(T )x denote the column vector H(T )x =
(
n(x)β γ

β
n(x)−1
n(x)2

r(x′, x)
)
x′∈X (T )

and

H(T ) denote the matrix H(T ) = (H(T )x)x∈X (T ). Let V denote the column vector of v(·),

i.e., V = (v(x))x∈X (T ). Hence, TE(T, v)β = ∥H(T )V ∥ 1
β
is a 1

β
-norm.16

According to triangle inequality in Lp norm, we have

∥H(T ) [θV1 + (1− θ)V2] ∥ 1
β
≤ ∥H(T )θV1∥ 1

β
+∥H(T )(1−θ)V2∥ 1

β
= θ∥H(T )V1∥ 1

β
+(1−θ)∥H(T )V2∥ 1

β
,

which implies TE(T, v)β is convex in v.

Under the budget constraint, the feasible region of prize structure v is a simplex with

the dimension of |X (T )|. Therefore, TE(T, v)β is maximized when v is a vertex of the

simplex, namely

v∗(x) =

1, x = xP ,

0, otherwise.

(ii) Apply a method similar to that used to prove Theorem 2, when xP ̸= xR, we

can construct another contest architecture T ′ that induces strictly higher effort than

T : Suppose there are m contestants in the sub-contest with architecture T (xP ), then

applying the winner-take-all rule in T (xP ) will induce same total effort as in T with

v(xP ) = 1. Based on the contest architecture T (xP ), fixing the number of stages and the

number of matches in each stage, we construct T ′ by randomly selecting one contestant

15In the proof of Proposition 8, we will show that TE(T, v)β is a convex function with respect to v,
then it must be a quasi-convex function with respect to v, so does TE(T, v).

16Since 1
β > 1 only if β < 1, this norm is no longer well defined when β > 1.
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(say contestant i) in the first stage of T (xP ) and grouping him with those n−m shirking

contestants into a new match of stage 0. Then, the effective prize of each match in T ′

except the new match of stage 0 will be the same as in T (xP ) since it is solved backward.

And T ′ will induce strictly higher effort than T (xP ) since it includes an extra match in

stage 0.

However, when β > 1, the total effort function is no longer quasi-convex, the same

argument fails, and a pivotal match may not necessarily exist. Nevertheless, in the

following, we present a necessary and sufficient condition that assigning all prizes to a

single match is optimal, which also determines whether prize splitting is beneficial to the

contest organizer.

Proposition 9. Given the contest architecture T , (i) When β ≥ 1, x is a pivotal match

if and only if

∑
z∈X (T )

n(z)− 1

n(z)
(r(x′, z)− r(x, z))

(
n(z)− 1

n2(z)
r(x, z)

) 1
β
−1

≤ 0,∀x′. (13)

If no such x exists, the prize should be split into multiple matches. (ii) When β > 1, the

optimal prize structure is either winner-take-all or prize splitting.

Proof. (i) Without loss of generality, assume the nodes of tree architecture T , x1, x2, · · · , xn,

are topologically sorted. That is, xj /∈ F(xi),∀j > i. Clearly, the first node x1 must be

the root xR. Define bij =
γ
β
n(xi)−1
n2(xi)

r(xj, xi), and let the matrix B collect all entries,

B =


b11 b12 · · · b1n

b21 b22 · · · b2n
...

...
...

bn1 bn2 · · · bnn

 .

Then, we can define a column vector w = (w1, · · · , wn) such that w = Bv, where

v = (v(x1), · · · , v(xn)) denotes the column vector representing the prize allocation rule

v(·). Hence, the total effort of all players in the contest can be expressed as

TE(T, v) =
∑
i

n(xi)

(∑
j

bijv(xj)

)1/β

=
∑
i

n(xi)w
1/β
i (14)
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We then prove Proposition 9(i) in two steps: Firstly, we prove that the Hessian matrix,

denoted by ∇2TE, is negative definite, if we treat TE as a function of {vi} = {v(xi)};

Secondly, we prove that Equation 13 is a necessary and sufficient condition for a match

to be pivotal by calculating the Karush-Kuhn-Tucker (KKT) conditions.

Step 1. Recall the definition of r(x′, x) in Section B.3, we can determine the sign of

bij: bij = 0 for i > j; bij ≥ 0 for i < j; and bij > 0 for i = j.

Since B is an upper triangular matrix with positive real-number diagonals, B is in-

vertible. Note that ∂TE
∂wi∂wj

= 0 for i ̸= j. According to the compound function derivation

rule, the Hessian matrix can be written as ∇2TE = BTdiag(ζ1, · · · , ζn)B, where the en-

tries of the diagonal matrix diag(ζ1, · · · , ζn) are ζi =
∑

i
1
β
( 1
β
− 1)n(xi)w

1
β
−2

j < 0. Thus,

∇2TE is negative definite.

Step 2. TreatingTE as a function of {v(xi)}, the Lagrangian of optimization problem

maxTE(T, v) s.t. vi ≥ 0,
∑

i vi ≤ 1 is

minL(v, µ, λ) = −TE(T, v) + µ(
∑

vi − 1)− λivi,


vi ≥ 0,

∑
i vi ≤ 1,

µ, λi ≥ 0,

λivi = 0, µ(
∑

vi − 1) = 0.

(15)

Since ∇2TE is negative definite, the prize structure v∗(xk) = 1 maximizes TE(T, v) if

and only if v∗ satisfies the KKT condition



∇vL(v, µ, λ) = 0,

vi ≥ 0,
∑

i vi ≤ 1,

µ, λi ≥ 0,

λivi = 0, µ(
∑

vi − 1) = 0.

(16)
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Substitute v∗(xk) = 1 into Equation 16, the KKT conditions can be simplified to
− ∂

∂vi
TE(T, v)|v=v∗ + µ− λi = 0

µ, λi ≥ 0,

λk = 0.

(17)

Then

∂

∂vi
TE(T, v)|v=v∗ −

∂

∂vk
TE(T, v)|v=v∗ = (µ− λi)− (µ− λk) = −λi ≤ 0,∀i. (18)

Recall the expression of TE(T, v) in Equation 12. Then

∂

∂vi
TE(T, v)|v=v∗ =

n∑
j=1

1

β
(
γ

β
)1/β

n(xj)− 1

n(xj)
r(xi, xj)

(
n(xj)− 1

n2(xj)
r(xk, xj)

) 1
β
−1

,

∂

∂vk
TE(T, v)|v=v∗ =

n∑
j=1

1

β
(
γ

β
)1/β

n(xj)− 1

n(xj)
r(xk, xj)

(
n(xj)− 1

n2(xj)
r(xk, xj)

) 1
β
−1

.

Therefore, Equation 18 is equivalent to

∂

∂vi
TE(T, v)|v=v∗ −

∂

∂vk
TE(T, v)|v=v∗

=
1

β
(
γ

β
)1/β

n∑
j=1

n(xj)− 1

n(xj)
(r(xi, xj)− r(xk, xj))

(
n(xj)− 1

n2(xj)
r(xk, xj)

) 1
β
−1

≤ 0,∀i.

Setting xk = x, xi = x′, xj = z and removing the constant 1
β
( γ
β
)1/β, we obtain Equation 13.

(ii) Assume a pivotal match x is not the final xR. Then there must exist a node z

that is not the descendant of x, which satisfies r(xR, z) > 0 and r(x, z) = 0. Thus,

n(z)− 1

n(z)
(r(xR, z)− r(x, z))

(
n(z)− 1

n2(z)
r(x, z)

) 1
β
−1

= +∞.

This contradicts to Equation 13 when we set x′ = xR. Therefore, only xR could be the

pivotal match.

Equation 13 shows that the contest organizer is more likely to split the prize when the

cost structure becomes more convex. For a match x meeting Equation 13, its associated

{r(x, z)}z∈X (T ) needs to be averagely larger than {r(x′, z)}z∈X (T ) for any other matches.
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The term r(x′, z) − r(x, z) is negative for some z with a large r(x, z) and is positive

otherwise. Notice that
(

n(z)−1
n2(z)

r(x, z)
) 1

β
−1

is relatively lower for a larger r(x, z), and it

goes down further as β grows. When β becomes larger, the weight of r(x′, z)− r(x, z) is

lower (higher) if it is negative (positive). Therefore, under the more demanding condition,

splitting the prize is more likely to occur.

In particular, when β = 1, Equation 13 can be simplified to

∑
z∈X (T )

n(z)− 1

n(z)

(
r(x′, z)− r(x, z)

)
≤ 0,∀x′. (19)

Recall that H(T, x) is defined as
∑

z∈X (T )
(n(z)−1)γ

n(z)
r(x, z). Hence, the left-hand side of

Equation 19 can be further expressed as

∑
z∈X (T )

n(z)− 1

n(z)
r(x′, z)−

∑
z∈X (T )

n(z)− 1

n(z)
r(x, z) =

H(T, x′)−H(T, x)

γ
.

Then, the match xP = argmaxx∈X (T ) H(T, x) satisfies the Equation 19. Proposition 9(i)

is reduced to Proposition 1.

Above analysis suggests that the winner-take-all rule can be rationalized under con-

cave but not convex costs. In addition, due to the lack of quasi-convexity under convex

costs, numerical methods cannot solve the general-form optimal prize rule, since the out-

put may be locally optimal but not globally optimal. In the following, we first validate the

robustness of the dynamic programming method given the winner-take-all rule, and then

work on a joint design problem with four contestants to obtain corresponding intuitions.

B.3.2 Optimal Contest Architecture under Winner-Take-All Rules

Following the notations in the baseline analysis, let Λ(n, γ) = ⟨s,λ⟩ denote the design

of the final match in the T-contest. Then, the total effort of the final match is
(

γ
β
s−1
s2

)1/β
,

and the effective prize of participating in the final competition is
s− γ

β
(s−1)

s2
. Let Λ∗(n, γ)

and TE∗(n, γ) denote the optimal design of the final match and the maximum total effort,

respectively. Given the maximum total effort of the sub-contest with λτ contestants

TE∗(λτ , γ), the total effort induced in the sub-contest with λτ contestants in the original

contest architecture is just
(

s− γ
β
(s−1)

s2

)1/β
TE∗(λτ , γ). The Bellman Equation 20 shown in

Proposition 10 characterizes the optimal T-contest architecture with n contestants under
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nonlinear costs, so that we can store the optimal design of the final match Λ∗(n, γ) in the

dynamic programming process.

Proposition 10. Given TE∗(n̂, γ) for n̂ = 1, · · · , n − 1, the optimal design of the final

match Λ∗(n, γ) = ⟨s∗,λ∗⟩ is determined by

Λ∗(n, γ) = arg max
Λ=⟨s,λ⟩:s∈{2,··· ,n}


(
γ

β

s− 1

s2

)1/β

︸ ︷︷ ︸
Efforts in Final

+

(
s− γ

β
(s− 1)

s2

)1/β s∑
τ=1

TE∗(λτ , γ)︸ ︷︷ ︸
Efforts in s Sub-contests


(20)

where λτ is the τ th entry in λ.

The total effort induced by the optimal contest architecture is

TE∗(n, γ) =

(
γ

β

s∗ − 1

(s∗)2

)1/β

+

(
s∗ − γ

β
(s∗ − 1)

(s∗)2

)1/β s∗∑
τ=1

TE∗(λ∗
τ , γ). (21)

B.3.3 Optimal Joint Design: an Example

Consider the joint design problem with four players in a T-contest.

Given a binary tree architecture shown in Figure 7, we assume γ
β

∈ (0, 2) to en-

sure pure strategy equilibrium in each match and avoid trivial analysis. Consider the

prize structure vs such that vs(xR) = s ∈ [0, 1] and vs(x1) = vs(x2) = 1−s
2
. Then,

v0 means halving all prizes to both semifinals, and v1 means winner-take-all.17 Ac-

cording to Equation 12, the total effort induced by prize structure vs is TE(T, vs) =

2
(

γs
4β

) 1
β
+ 4

[
γ
4β

(
1−s
2

+ (2β−γ
4β

)s
)] 1

β
.

xR

x1

1 2

x2

3 4

Figure 7: 4-player T-Contest Figure 8: Joint Design

17Clearly, any prize allocation rule with vs(x1) ̸= vs(x2) is dominated. Hence, assigning all budgets to
one semifinal is strictly dominated by v0. Only the final xR could be a pivotal match.
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Clearly, solving the optimal prize structure based on a transcendental equation is

difficult, and incorporating the design of the contest architecture is even more challenging.

In the following, we use numerical software to find the optimal contest architecture and

reward scheme, thereby gaining some insight for general joint design. Among possible

tree architectures, only the simultaneous contest and the strong balanced binary tree

contest could be optimal. The simultaneous contest is necessarily associated with the

winner-take-all rule. While for the strong balanced binary tree, either winner-take-all or

prize splitting could be optimal. Therefore, we need to compare three potential strategies.

Figure 8 summarizes the optimal strategy for different values of β and γ with γ < 2β.

Given β, when γ is relatively small such that (β, γ) falls in area B, applying the winner-

take-all rule in a complete binary tree architecture (BT+WTA for short) is optimal. While

with a relatively large γ, if β is small such that (β, γ) falls in area A, the simultaneous

contest (S for short) is optimal. Otherwise, (β, γ) falls in area C, splitting the prize in a

complete binary tree architecture (BT+Split for short) is optimal.

Figure 8 shows that BT+WTA is optimal with a relatively small γ. On the one hand,

given β, S is better than BT+WTA for a large γ, since the simultaneous contest tends to

dissipate more rent.18 On the other hand, BT+Split is better than BT+WTA for a large

γ when β > 1. According to Proposition 9, the winner-take-all rule is better than prize

splitting if and only if ( γ
2β
)(1

2
− γ

4β
)

1
β
−1 < 1. Since ( γ

2β
)(1

2
− γ

4β
)

1
β
−1 increases with γ when

β > 1, BT+WTA is better when γ is small.19

Under the winner-take-all rule, contestants have more incentive to exert effort when

competitions become more discriminatory (γ → 2β−). A concave cost with decreasing

marginal cost further strengthens this competition effect. However, with a convex cost

of effort, the increasing marginal cost will discourage contestants from making an intense

effort. Therefore, splitting the prize, which reduces the high marginal cost associated

with winner-take-all, is optimal.

Further note that when the cost function is sufficiently concave (i.e., β is suffi-

ciently small), BT+WTA is always the optimal design. This is because concave cost im-

plies economies of scale, and monotonicity under linear costs (namely, the total effort is

monotonic with the number of contestants) becomes less effective for effort elicitation.

18For example, when β = 1, the simultaneous contest is better if γ > 1 ( Proposition 6).
19For any β > 1 and γ → 2β−, the winner-take-all rule is no longer optimal. When γ → 2β−,

1
2 − γ

4β → 0+. Since 1
β − 1 is negative, ( 12 − γ

4β )
1
β−1 goes to positive infinity and ( γ

2β )(
1
2 − γ

4β )
1
β−1 > 1.
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Therefore, aggregating all contestants in a simultaneous contest is never optimal.
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