
Public Choice (2011) 148:419–434
DOI 10.1007/s11127-010-9662-1

On disclosure policy in contests with stochastic entry

Qiang Fu · Qian Jiao · Jingfeng Lu

Received: 14 November 2009 / Accepted: 12 May 2010 / Published online: 9 June 2010
© Springer Science+Business Media, LLC 2010

Abstract We study how a contest organizer who seeks to maximize participant effort should
disclose the information on the actual number of contestants in an imperfectly discrimina-
tory contest with stochastic entry. When each potential contestant has a fixed probability
of entering the contest, the optimal disclosure policy depends crucially on the properties of
the characteristic function H(·) = f (·)/f ′(·), where f (·) is the impact function. The contest
organizer prefers full disclosure (full concealment) if H(·) is strictly concave (strictly con-
vex). However, the expected equilibrium effort is independent of the prevailing information
disclosure policy if a linear H(·) (Tullock Contest) applies.

Keywords Contests · Stochastic entry · Number of contestants · Disclosure · Effort

JEL Classification C72 · D72 · D82

1 Introduction

Much of the contest literature makes the assumption that the number of competing agents is
fixed, and that this number is known by all participants. Although this paradigm simplifies
the analysis significantly, it stands in contrast to numerous contest settings in real-life that
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involve an uncertain set of participants. For instance, a firm racing to develop an innovation
may not know how many other firms are pursuing the same idea. Similarly, a job applicant
may be uncertain about the number of competitors for the same post. In a procurement
tournament, a seller may not be aware of the number of bidders who are interested in the
contract.

In this study, we consider contests with a stochastic number of contestants. Our setting
involves a fixed number of potential contestants, each of whom has a fixed probability of
entering the contest. The realized number of participants remains uncertain, but follows a
binomial distribution. The participating contestants exert costly and nonrefundable efforts
to compete for a single prize. We further assume that their effort accrues to the benefit of the
contest organizer. In this scenario, our analysis sets out to address a classical question in the
contest literature: How does the contest organizer choose a disclosure policy that maximizes
the expected total effort? That is, Should the contest organizer disclose or conceal the actual
number of contestants to participants? Which policy alternative leads to a higher level of
expected total effort?

To address these questions, we consider a three-stage game. In the first stage, the contest
organizer chooses her disclosure policy. She either reveals the actual number of contestants,
or conceals this information. She announces her policy choice publicly to potential con-
testants. In the second stage, the actual number of contestants is realized and learnt by the
organizer. This information is disclosed to the contestants if the organizer had earlier chosen
to do so. In the third stage, contestants submit their effort entries simultaneously in compe-
tition for the single prize.

We adopt the well-studied ratio-form contest success function to abstract the underlying
stochastic winner selection process.1 In this setting, a contestant i, who exerts an effort
xi , wins the prize with a probability pi(xi,x−i ) = f (xi )

f (xi )+
∑

j �=i f (xj )
if there are N − 1 others

who exert effort of x−i = (x1, x2, . . . , xi−1, xi+1, . . . , xN). The function f (·) has been named
the “impact function” by Wärneryd (2001), and it specifies each contestant’s production
technology in the contest.

The optimal disclosure policy depends crucially on the characteristic function of the con-
test, which is formally defined as H(x) ≡ f (x)

f ′(x)
. The properties of this function determine

how each participating contestant responds to various environmental factors in the contest.
We show that disclosing the actual number of contestants leads to a higher (lower) level of
total effort, relative to concealing the information, if the characteristic function is concave
(convex). However, the level of expected total effort is independent of the prevailing disclo-
sure policy, if the characteristic function is linear. We further show that a linear characteristic
function is uniquely generated by contests known as Tullock (1980) contests, which assume
f (x) = xr .

Our analysis yields interesting theoretical implications. Despite all contestants being risk-
neutral, a strictly concave characteristic function leads contestants to behave as if they were
risk-loving when they supply their effort.2 Conversely, “pseudo” risk-aversion appears when
a strictly convex characteristic function applies. With non-Tullock contest technologies, the
disclosure policy plays a pivotal role in determining the equilibrium level of effort, because
of the “pseudo” risk-loving/averse attitudes that are underpinned by concave/convex char-
acteristic functions.

1The reader is referred to Skaperdas (1996) for the axiomatic foundation of the ratio-form contest success
function and Fu and Lu (2008) for the function’s micro-foundation that is derived from a noisy-ranking
perspective.
2In other words, the individual effort function is convex in terms of the amount of prize.
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To check the robustness of our main results and to deepen our analysis, we further gen-
eralize our basic setting by allowing the contest organizer to partially disclose the actual
number of participants. Under a partial disclosure policy, the organizer does not reveal the
exact number of participants, but only the range of this number. Will the organizer benefit
from partial disclosure? How should she structure the optimal partial disclosure policy?
We show that strict concavity (convexity) of the characteristic function must lead to full
disclosure (full concealment), and partial disclosure is never optimal. By way of contrast,
the disclosure policy does not affect the expected overall effort in a Tullock contest (which
has a linear characteristic function), in spite of the numerous possible ways of constructing
a partial disclosure policy.

Only a handful of papers have formally investigated contests with stochastic participa-
tion. Higgins et al. (1985) pioneered this strand of literature by studying a contest in which
each rent seeker bears a fixed cost for participation. They established a unique symmetric
mixed strategy equilibrium, where each rent seeker randomly enters the contest, and ends
up with zero surplus. While Higgins et al. (1985) investigated endogenous entry strategies,
a few other studies have assumed exogenous entry patterns. Myerson and Wärneryd (2006)
examined a contest with an infinite number of potential entrants. Both Münster (2006) and
Lim and Matros (2010) assumed a finite pool of potential contestants. In their setting, each
participating contestant enters the contest with a fixed and independent probability and the
number of participating contestants follows a binomial distribution. Münster (2006) focused
on the impact of players’ risk attitudes on the contestants’ incentive to supply effort. In
contrast, Lim and Matros (2010) considered a scenario with risk-neutral contestants.

The current study is most closely related to Lim and Matros (2010), who provide a com-
plete account of the bidding equilibrium in a Tullock contest with a stochastic number of
contestants. To the best of our knowledge, Lim and Matros (2010) are the first to study opti-
mal disclosure policies in contests. They establish that the disclosure policy (full disclosure
or full concealment) does not impact the level of effort. Our analysis allows for more gen-
eral contest technologies, and we find sharply different results that indicate the “relevance”
of disclosure policy when non-Tullock contests are considered. Furthermore, we allow con-
test organizers to partially disclose information. The “disclosure irrelevance” principle in
Tullock contests (with their linear characteristic functions) holds, despite the substantially
richer set of candidate disclosure strategies available to organizers. Our study thus comple-
ments Lim and Matros (2010) in these regards.

2 Contest with a stochastic number of contestants

Let M (≥ 2) denote the set of risk neutral potential contestants whose probability of partici-
pating in the contest is q ∈ (0,1). All participating contestants compete for a single prize of
value v > 0.

Suppose that N ≤ M contestants participate and simultaneously commit to their nonneg-
ative rent seeking efforts xi, i = 1,2, . . . ,N . The effort is costly and non-refundable, and
the contestants incur a unit marginal cost. We assume also that the winner is determined by
a ratio-form contest success function. This mechanism has been commonly adopted in the
literature, and is axiomatized by Skaperdas (1996). If N ≥ 2 contestants enter the contest, a
participating contestant i wins the prize v with a probability

pi(xi,x−i;N) = f (xi)
∑N

j=1 f (xj )
, (1)
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where the function f (·) is strictly increasing, thrice differentiable and weakly log concave,
with f (0) = 0. The log-concavity, as will be shown, guarantees the uniqueness of symmetric
equilibrium in the contest. Wärneryd (2001) names f (·) the impact function of the contest,
which indicates a contestant’s production technology. If all contestants make zero effort, we
assume that the prize recipient is randomly chosen from the pool. Moreover, we assume that
if there is only one participant, then he automatically wins the prize regardless of his effort.

We assume further that the effort exerted by the contestants accrues to the benefit of the
contest organizer. The contest organizer is allowed to commit to her disclosure policy—
either to disclose the actual number of participants, or to conceal this information—and
announces this policy choice publicly. We denote the former policy by D, and the latter
by C. Nature then determines N , the actual number of participants. The organizer observes
this information, and discloses it if and only if she has committed to a disclosure. The par-
ticipants effort entries simultaneously x = (xi) to compete for the prize.

2.1 Equilibrium

We now explore the equilibrium of the contest under each policy. We first consider a case in
which the impact function f (·) is concave, where a unique equilibrium is readily established.
We then study convex impact functions and show that the contest may still yield a unique
symmetric equilibrium.

2.1.1 Concave impact functions

Concave impact functions provide a stronger condition than weak log-concavity. It is well
known that a concave impact function f (·) is sufficient for the existence and uniqueness
of symmetric equilibria in a standard contest. We show that this condition guarantees the
existence and uniqueness of symmetric equilibria in our context regardless of the prevailing
disclosure policy.

Contest with disclosure We first consider the subgame where the contest organizer com-
mits to the policy D. All contestants learn of N before they decide on their effort level. Each
contestant i then rationally chooses his effort xi to maximize the expected payoff

πi = pi(xi,x−i;N)v − xi. (2)

Consider a subgame where N contestants participate. We now solve for the symmetric
equilibrium of the contest. Define H(x) ≡ f (x)

f ′(x)
. As shown below, the equilibrium behavior

of each contestant is characterized by the function H(·) and its inverse. H(·) is thus named
as the characteristic function of the contest for convenience.

The symmetric equilibrium effort x is determined by the first order condition

H(x) = N − 1

N2
v. (3)

Because f (x) is concave, we have H ′(x) > 0. As H(0) = 0, there exists a unique x > 0
which solves (3). The solution to (3) constitutes a unique symmetric pure-strategy equilib-
rium, if and only if it globally maximizes a representative contestant i’s expected payoff
πi given that all others exert the same effort. We now formally establish the existence and
uniqueness of a symmetric pure-strategy equilibrium.
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Proposition 1 Suppose that N (≥ 2) contestants participate in the contest. If they learn the
actual number (N ) of participants, each contestant in the unique symmetric pure-strategy
equilibrium makes an effort

x(N) = H−1

(
N − 1

N2
v

)

> 0, (4)

where H−1(·) is the inverse of the characteristic function H(·). The overall effort of the
N -person contest is then given by

E(N) ≡ Nx(N) = N · H−1

(
N − 1

N2
v

)

. (5)

Proof x(N) of (4) is derived from the first order condition (3). To establish it as a sym-
metric equilibrium, it suffices to show that a representative contestant i’s expected pay-
off πi is globally concave in xi given that all others exert the effort of (4). We have
∂πi

∂xi
= (N−1)x(N)f ′(x)

[f (x)+(N−1)x(N)]2 v − 1. As f ′(x) ≥ 0 and f ′′(x) ≤ 0, f (x) increases and f ′(x) de-

creases with their arguments. Hence, ∂πi

∂xi
decreases with xi , i.e. πi is concave in xi : πi

increases with xi when xi ≤ x(N) and πi decreases with xi when xi ≥ x(N). A symmetric
equilibrium is therefore established where every contestant exerts effort x(N). As (3) has a
unique solution, the symmetric equilibrium with x(N) is unique. �

Having obtained the solution to every possible contest with N participants, we are now
ready to find the expected total effort of the game when the D-policy is adopted. Given the
fixed entry probability q, the probability of N ∈ {0,1,2, . . . ,M} contestants showing up is
given by Pr(N) = CN

MqN(1 − q)M−N . Hence, the expected total effort is given by

TED(q) =
M∑

N=1

CN
MqN(1 − q)M−NNx(N)

=
M∑

N=1

CN
MqN(1 − q)M−NNH−1

[
1

N

(

1 − 1

N

)

v

]

= Mq

M∑

N=1

CN−1
M−1q

N−1(1 − q)M−NH−1

[
1

N

(

1 − 1

N

)

v

]

. (6)

Contest with concealment We now analyze the subgame in which the actual number of
participants is not revealed by the contest organizer. A participant i chooses his effort xi to
maximize the expected payoff

πi(xi,x−i;q) =
M∑

N=1

CN−1
M−1q

N−1(1 − q)M−Npi(xi,x−i;N)v − xi.

Proposition 2 If the actual number of participating contestants is not disclosed, each par-
ticipant exerts an effort

xC(q) = H−1

[
M∑

N=1

CN−1
M−1q

N−1(1 − q)M−N 1

N

(

1 − 1

N

)

v

]

, (7)
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in the unique symmetric pure-strategy equilibrium, where H−1(·) is the inverse of the char-
acteristic function H(·).

Proof We first assume that a symmetric equilibrium exists. The first order condition for
effort is given by

M∑

N=1

CN−1
M−1q

N−1(1 − q)M−N N − 1

N2

f ′(x)

f (x)
v − 1 = 0. (8)

A concave f (·) implies that f ′(x)

f (x)
must be monotonic. Hence, there exists a unique solution to

the function, as given by (7). It remains to verify that xC(q) constitutes an equilibrium. First,

note that pi(xi,x−i;N) is concave. d2pi (xi ,x−i ;N)

dx2
i

= f ′′(xi )[f (xi )+
∑

j �=i f (xj )]−2[f ′(xi )]2
[f (xi )+

∑
j �=i f (xj )]3

∑
j �=i f (xj )

is negative because of the concavity of f (·). Second, πi(xi,x−i;q) is a weighted sum of
pi(xi,x−i;N). Hence, πi(xi,x−i;q) must be concave in xi as well. The global concavity
ensures that the solution of (7) constitutes an equilibrium. �

Proposition 2 establishes the unique pure-strategy symmetric equilibrium of the contest
with concealment. The expected overall effort in the subgame is therefore obtained as

TEC(q) = MqxC(q)

= MqH−1

[
M∑

N=1

CN−1
M−1q

N−1(1 − q)M−N 1

N

(

1 − 1

N

)

v

]

. (9)

2.1.2 Convex impact functions

Symmetric equilibria in a contest do not necessarily require a concave impact function.
However, a convex impact function would substantially complicate the analysis, because a
contestant’s payoff function may not be globally concave. In a two-player setting, Baye et
al. (1994) have demonstrated the difficulty in characterizing the equilibria when the impact
function becomes excessively convex. The analysis in our context can be further complicated
by stochastic entries. Irregular problems could result, especially when N is concealed. In
this case, each participant’s payoff function πi(xi,x−i;q) is the weighted sum of a set of
non-monotonic functions with varying curvatures. More rigorous approaches are required
to establish the equilibria in such games.

We now explore the possible equilibria when convex impact functions are in place. Two
examples are discussed in order to demonstrate these possibilities. Because of the log-
concavity of f (x), (3) and (8) would continue to yield a unique solution, as given by (4)
and (7), respectively. However, the solutions to first order conditions do not necessarily con-
stitute an equilibrium. In the two examples discussed below, unique symmetric equilibria do
exist and the results established in the previous section (Propositions 1 and 2, (6) and (9))
continue to apply.

We first consider the often-studied Tullock contest with impact function f (x) = xr . The
following can be obtained.

Claim 1 When r ∈ (1,1+ 1
M−1 ], there always exists a unique symmetric pure-strategy equi-

librium.
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(a) When N is disclosed, in a N -person contest, each participant exerts an effort x(N) =
r(N−1)

N2 v > 0.

(b) When N is concealed, each participant exerts an effort xC(q) = r
∑M

N=1 CN−1
M−1q

N−1(1−
q)M−N 1

N
(1 − 1

N
)v > 0.

Proof See Appendix. �

It is well known that when N , the number of participants, is common knowledge, a sym-
metric equilibrium exists in a Tullock contest if and only if r ≤ 1 + 1

N−1 . When r falls
below the cutoff 1 + 1

M−1 , a unique symmetric equilibrium results in a contest with disclo-
sure regardless of the actual number N . We further show that the cutoff also guarantees the
existence of a unique symmetric equilibrium in a contest with concealment. The equilibrium
effort outlays are adapted from (4) and (7), respectively. The overall effort in contests with
disclosure and concealment can also be obtained from (6) and (9), respectively.

Further, we consider another family of convex impact functions that could also yield
a symmetric equilibrium. Consider the family of impact functions f (x) = eαx − 1, with
α ∈ (0,1]. For analytical convenience, the prize is normalized to v = 1. The following is
then shown.

Claim 2 Let f (x) = eαx − 1, with α ∈ (0,1]. When M ≤ 4, a unique symmetric equilibrium
exists in the contest regardless of the prevailing disclosure policy.

(a) When N is disclosed, in a N -person contest, each participant exerts the equilibrium
effort

x(N) = − 1

α
ln

(

1 − N − 1

N2
α

)

. (10)

(b) When N is concealed, each participant exerts the equilibrium effort

xC(q) = − 1

α
ln

[

1 − α

M∑

N=1

CN−1
M−1q

N−1(1 − q)M−N N − 1

N2

]

. (11)

Proof See Appendix. �

Claim 2 identifies another possible context in which a convex impact function renders
symmetric equilibria. Again, (10) and (11) are adapted from (4) and (7) respectively. The
overall effort in contests with disclosure and concealment can be obtained from (6) and (9),
respectively.

2.2 Optimal disclosure policy

We now compare (6) with (9) to investigate the effort-maximizing disclosure policy. One
can conclude that TED(q) > TEC(q), i.e.

∑M

N=1 CN−1
M−1q

N−1(1 − q)M−NH−1[ 1
N

(1 − 1
N

)v] >

H−1[∑M

N=1 CN−1
M−1q

N−1(1 − q)M−N 1
N

(1 − 1
N

)v], simply requires H−1(·) to be convex by

Jensen’s Inequality, and therefore the characteristic function H(·) ≡ f (·)
f ′(·) to be strictly con-

cave. We summarize our results as follows.

Theorem 1 Suppose that every contestant independently enters the contest with the same
exogenous probability q and symmetric equilibria exist for contests with disclosure and
concealment of number of entrants.



426 Public Choice (2011) 148:419–434

(a) Disclosing the actual number of contestants elicits strictly more (less) effort than con-
cealing the actual number of contestants, if the characteristic function H(·) is strictly
concave (convex).

(b) (Disclosure Irrelevance) The resultant expected total effort is independent of the disclo-
sure policy, if the characteristic function H(·) is linear.

We do not lay out a dedicated proof, but briefly interpret the logic that underpins our
main result. Note that the function H−1(·) (as well as its inverse H(·)) plays a pivotal role
in determining the equilibrium effort of each participating contestant. As revealed by (3)
and (4), each contestant’s equilibrium effort depends crucially on the properties of the
characteristic function (and those of its inverse), which are fundamentally determined by
the contest technology f (·). Recall from (4) that a contestant exerts an equilibrium ef-
fort x(N) = H−1(N−1

N
v). The function H(·) thus depicts how contestants respond to the

competitive environment of the contest, e.g., how they respond to changes in the number
of competitors and/or the value of prize, etc. A given contest environment would trigger
sharply different responses by contestants when the prevailing contest technologies (i.e., the
characteristic functions) differ.

When N is to be concealed, each participating contestant exerts a uniform equilibrium
effort xC(q) = H−1[∑M

N=1 CN−1
M−1q

N−1(1 − q)M−N 1
N

(1 − 1
N

)v] upon entry. By way of con-
trast, when N is to be disclosed, each participating contestant responds to each realization
of N by exerting an effort x(N) = H−1(N−1

N2 v) upon entry. On average, he exerts an effort
∑M

N=1 CN−1
M−1q

N−1(1 − q)M−NH−1[ 1
N

(1 − 1
N

)v].
A larger N implies that a less favorable contest is realized. Hence, when N is disclosed,

a contestant exerts more effort when N (≥ 2) is small, while he exerts less effort when N

is large.3 A concave H(·) (i.e., a convex H−1(·)) implies that a contestant’s equilibrium
effort is increasingly elastic with respect to the value of its argument. A contestant tends to
respond increasingly sensitively to any given decrease in N (by increasing effort x(N)), but
less sensitively to any given increase in N . A strictly concave characteristic function leads
a contestant to behave as if he were risk-loving when he supplies his effort, in spite of his
risk-neutrality: a smaller N (a more favorable contest) incentivizes a contestant more than
a larger N (a less favorable contest) disincentivizes him. Consequently, each contestant, on
average, exerts more effort when N is disclosed than when it is concealed.

By way of contrast, when H(·) is convex (i.e., H−1(·) is concave) and the realized N

is disclosed, a contestant responds more sensitively to an increase in N (by lowering his
effort), but less sensitively to a decrease in N . A strictly convex characteristic function
leads a contestant to behave as if he were risk-averse: A larger N (a less favorable contest)
disincentivizes him more than a smaller N (a more favorable contest) incentivizes him. This
leads to the result that his overall expected effort

∑M

N=1 CN−1
M−1q

N−1(1 − q)M−NH−1[ 1
N

(1 −
1
N

)v] falls below xC(q).
Theorem 1(b) shows that TED(q) = TEC(q) if H(x) is linear in x. Lim and Matros

(2010) establish the “disclosure-irrelevance” principle in a Tullock contest with f (x) =
axr . It can be directly verified that a linear characteristic function results if and only if a
Tullock contest prevails. Note H(0) = 0 and H ′(·) > 0. Therefore, we must have H(x) =
tx if H(·) is a linear function, with constant t > 0. According to the definition of H(x),
we have f ′(x)

f (x)
= 1

tx
. Solving the differential equation yields lnf (x) = ln(x

1
t ) + b, where b

is a constant. It further leads to f (x) = ebx
1
t , which takes the form of a power function.

3Note that 1
N

(1 − 1
N

) decreases with N .
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Our result reveals that the “disclosure-irrelevance” principle of Lim and Matros (2010) is
essentially underpinned by the linearity of characteristics function H(·) that is associated
with a “Tullock” contest.

There are many possible forms of f (·) that guarantee the existence of symmetric equilib-
ria and lead to strictly concave or strictly convex characteristic functions. We present below
two examples to illustrate these possibilities.

Example 1 Consider the family of functions f (x) = [ln(1 + x)]α, with α ∈ (0,1]. Sim-
ple calculus verifies H(x) = f (x)

f
′
(x)

= α−1(1 + x) ln(1 + x), which further leads to H
′
(x) =

α−1[1 + ln(1 + x)] > 0 and H
′′
(x) = 1

α
1

1+x
> 0. We then conclude that this functional form

leads to a convex characteristic function.

Example 2 Consider the family of functions in Claim 2 of Sect. 2.1.2 f (x) = eαx − 1, with
α ∈ (0,1]. As has been shown there, H

′′
(x) = −αe−αx < 0. This functional form then yields

a concave characteristic function.

3 Extensions and discussion

This part of the paper further explores the issue of information disclosure from two ad-
ditional dimensions. First, an extension that generalizes the disclosure policy in the basic
setting by allowing the contest organizer to partially reveal the information on the actual
number of participants is considered. Second, the commitment issue of disclosure policy is
explored.

3.1 Imperfect information disclosure

We have assumed that the organizer of the contest either fully discloses the number of partic-
ipating contestants, or completely withholds this information. We now allow the organizer
to partially disclose her information.

Let the organizer’s information disclosure strategy be depicted by an ordered set
(k1, k2, . . . , kI ), where ki ∈ {1, . . . ,M} and 1 ≤ I ≤ M. We arrange kis in ascending order
and let kI = M . Each (k1, k2, . . . , kI ) thus characterizes a partition of the information space
{1,2, . . . ,M}. The organizer does not announce the exact realization of N , but discloses that
N is in a partition set �i = {ki−1 + 1, . . . , ki}, i.e., ki−1 + 1 ≤ N ≤ ki . For convenience, we
assume k0 ≡ 0.

When I = M , the finest partition is obtained. The partition strategy converges to a full
disclosure strategy and the exact realization of N is revealed. When I = 1, the partition
strategy is the coarsest, reducing to a concealment policy. The finer the partition, the more
information on the actual number of contestants is revealed to contestants. We now investi-
gate the optimal partition strategy of the organizer.

Define Pi = ∑ki−1
t=ki−1

Ct
M−1q

t (1 − q)(M−1)−t , i = 1,2, . . . , I . Pi is the conditional proba-
bility that a participant faces a competition where the total number of contestants falls within
the range �i .

When a contestant participates in the contest and is informed that N ∈ �i , he has to
form a posterior belief of the number of competitors. He will be competing against t con-

testants with a probability Pr(t |�i) = Ct
M−1qt (1−q)(M−1)−t

Pi
, t = ki−1, . . . , ki − 1. Similar to (7),

an entrant would exert an effort x(�i) = H−1(
∑ki

t=ki−1+1 Pr(t − 1|�i)
1
t
(1 − 1

t
)v), which is
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obtained from the first order condition. It can be established as a global optimum through
the use of techniques that are utilized in Sect. 2.1.1 when f (x) is concave, or those utilized
in Sect. 2.1.2 when f (x) belongs to the two families of convex impact functions discussed
there. These proofs are not repeated for the sake of brevity.

We can immediately obtain that each participant on average expends an expected effort

Ex =
I∑

i=1

Pix(�i).

We then conclude the following.

Theorem 2 Suppose that every contestant independently enters the contest with the same
exogenous probability q , and symmetric equilibria exist for contests with disclosure and
concealment of the partition sets.

(a) If the characteristic function H(·) is strictly concave (strictly convex), the contest orga-
nizer fully discloses (fully conceals) the actual number of participating contestants, and
partial disclosure is never optimal.

(b) (Disclosure Irrelevance) The resultant expected total effort is independent of the dis-
closure strategy (i.e., how the partitions are constructed), if the characteristic function
H(·) is linear, where a Tullock contest with f (x) = axr applies.

Proof Let us merge two arbitrary neighbor partition sets �j and �j+1. After the merger,

we denote �̃ = �j ∪ �j+1. Define P̃ = ∑kj+1−1
t=kj−1

Ct
M−1q

t (1 − q)(M−1)−t = Pj + Pj+1. Then

P̃ is the conditional probability that a participant would face a competition where the total
number of contestants falls in �̃. The expected effort of an entrant is given by

Ẽx = P̃ x(�̃) +
∑

i �=j,j+1

Pix(�i).

To compare Ex and Ẽx, we only need to compare
∑j+1

i=j Pix(�i) with P̃ x(�̃). Note that

P̃ x(�̃) = (Pj + Pj+1)H
−1

( kj+1∑

t=kj−1+1

Ct−1
M−1q

t−1(1 − q)M−t

Pj + Pj+1

1

t

(

1 − 1

t

)

v

)

,

and Pjx(�j ) = PjH
−1

( kj∑

t=kj−1+1

Ct−1
M−1q

t−1(1 − q)M−t

Pj

1

t

(

1 − 1

t

)

v

)

.

If the H−1(·) is strictly concave, i.e., the characteristic function H(·) is strictly convex,
then

j+1∑

i=j

Pix(�i)

= (Pj + Pj+1)

j+1∑

i=j

Pi

Pj + Pj+1
x(�i)
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≤ (Pj + Pj+1)H
−1

[
j+1∑

i=j

(
Pi

Pj + Pj+1

ki∑

t=ki−1+1

Ct−1
M−1q

t−1(1 − q)M−t

Pi

1

t

(

1 − 1

t

)

v

)]

= (Pj + Pj+1)H
−1

[ kj+1∑

t=kj−1+1

Ct−1
M−1q

t−1(1 − q)M−t

Pj + Pj+1

1

t

(

1 − 1

t

)

v)

]

= P̃ x(�̃).

In this case, a coarser partition strategy always leads to more effort. At the optimum, the
organizer creates only one partition set (I = 1 and k1 = M), i.e., she discloses no informa-
tion to participating contestants.

When the characteristic function is strictly concave, the comparison is reversed: the finer
the partition strategy, the more effort is expended in the contest. The optimum requires full
information disclosure, i.e., I = M .

When the characteristic function is linear, where a Tullock contest applies and f (x) takes
the form f (x) = axr , merging the two partitions does not affect equilibrium effort.

We then obtain the results of Theorem 2. �

Theorem 2 strengthens the argument of Theorem 1. The results of Theorem 1 are robust
even when a partial disclosure strategy is allowed in the game. It further verifies that the
optimal disclosure policy depends crucially on the concavity of the characteristic function.
More importantly, partial disclosure never emerges in the equilibrium if the characteristic
function is strictly concave or strictly convex.

We again find that the “disclosure irrelevance” principle applies in the case of linear char-
acteristic functions (i.e., Tullock contests). Theorem 2(b) substantially adds to our knowl-
edge of behavior in this type of contest: the equilibrium level of effort expended in the
contest does not depend on whether the contest organizer discloses information and how
much information is disclosed, despite there being numerous ways to construct a partition
disclosure strategy!

3.2 Commitment of disclosure policy

We assume that the contest organizer commits to her disclosure policy prior to the realization
of the actual number of contestants. We follow the standard literature on mechanism design,
such as Myerson (1981), and assume that the contest organizer has commitment power. Lim
and Matros (2010) have also studied a case where the organizer is unable to commit, and
can decide whether or not to disclose the actual number of participants after the number
has been realized. They showed that the contest organizer would be unable to conceal the
information, and she always reveals it in equilibrium. The same result would be obtained in
the setting studied in this paper, regardless of the contest technology.4

It should be noted that the inability to commit could harm the contest organizer, as it
has been shown here that concealing the actual number of contestants can elicit more effort,
when the characteristic function H(·) is convex. Hence, it would be theoretically interesting
and important to explore the mechanisms that strengthen the commitment power of the con-
test organizer. A thorough analysis on the commitment issue of disclosure policy is beyond

4A detailed proof is omitted for the sake of brevity, but it is available from the authors upon request.
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the scope of this study, but will be pursued by the authors in future studies. However, two
remarks are in order to address this issue.

First, the contest organizer can seek third parties to maintain the credibility of her disclo-
sure policy. One mechanism for this is to resort to obtaining certification from the relevant
authorities, such as notaries, to verify the integrity of the committed contest rules. When the
characteristic function is convex, it would be incentive-compatible to exercise such a pro-
cedure in order to maintain a concealment policy in the contest, provided it does not entail
prohibitive certifying costs. Alternatively, the contest organizer may outsource or delegate
the administrative task to independent parties, which carry out the rules of the contest on her
behalf.

Second, the contest organizer can carry out a concealment policy more credibly when
she sponsors the contest not once but repeatedly over time. Insights can be borrowed from
the notion of “reputation equilibria”, and the extensive literature on reputation building.5

Reputation concerns create a trade-off between immediate gains and long-run payoffs, and
provide the contest organizer with additional incentives to maintain her concealment policy.
Although the contest organizer can be tempted to reveal the actual number of contestants
when it turns out to be low (which, if revealed, would incentivize each participant to supply
more effort) in a single contest, she may refrain from doing so since it prevents her from
establishing her reputation, and the loss can outweigh the temporary advantage. Deviation in
one period changes the beliefs of the contestants. By a logic analogous to the full-revelation
result in single-period contests (see Lim and Matros 2010), the organizer may have to reveal
the information in all future periods. This necessarily leads to less future effort on average.

4 Concluding remarks

The current study examines the impact of disclosure on expected effort in contests with a
stochastic number of contestants. Our analysis provides important insights into the design
of a contest with a stochastic number of contestants. We showed that whenever the charac-
teristic function H(x) = f (x)

f ′(x)
is linear (i.e., Tullock contest technology), the expected total

effort in a contest does not depend on how much information on the actual number of con-
testants is revealed to participants. However, this result does not hold when the characteristic
function is nonlinear. The comparison is determined by the concavity of the characteristic
function.
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Appendix: Proofs

Proof of Claim 1 When N is disclosed, it is well known that a unique pure-strategy symmet-
ric equilibrium exists, and the solution is not different from (4). The analysis is less explicit

5 Reader is referred to Shapiro (1982, 1983), Fudenberg and Levin (1989), Fudenberg et al. (1990), and Kreps
(1990).
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in the case where N is concealed. We then examine the payoff function πi(xi,x−i;q). (7)

still solves (8), but it has yet to be established as a global maximizer of πi(xi,x−i;q) given

that all other participants exert the same effort.

One can verify ξN(xi) = ∂2pi (xi ,x−i ;N)

∂x2
i

|x−i=xC(q) = −(r+1)xr
i
+(r−1)(N−1)(xC(q))r

[xr
i
+(N−1)(xC(q))r ]3 rxr−2

i (N −
1)(xC(q))r . Thus ξN(xi) is positive if xr

i < r−1
r+1 (N − 1)(xC(q))r , and negative if xr

i >
r−1
r+1 (N −1)(xC(q))r . This implies that �N(xi) = ∂pi (xi ,x−i ;N)

∂xi
|x−i=xC(q) is not monotonic: It is

increasing if xr
i < r−1

r+1 (N −1)(xC(q))r , and decreasing if xr
i > r−1

r+1 (N −1)(xC(q))r . Clearly
r−1
r+1 (N −1) ≤ 1 if and only if r ≤ N

N−2 . Because r ≤ 1+ 1
M−1 , we must have r−1

r+1 (N −1) < 1

for all N ≤ M .

Let �(xi) = ∑M

N=1 CN−1
M−1q

N−1(1 − q)M−N ∂pi (xi ,x−i ;N)

∂xi
|x−i=xC(q), and ξ(xi) =

∑M

N=1 CN−1
M−1q

N−1(1 − q)M−N ∂2pi (xi ,x−i ;N)

∂x2
i

|x−i=xC(q). Since r−1
r+1 (N − 1) < 1 for all N ≤ M ,

we have xr
i > r−1

r+1 (N − 1)(xC(q))r when xi = xC(q) for all N ≤ M , which means

ξ(xi)|xi=xC(q) < 0. This leads to d2πi (xi ,x−i ;q)

dx2
i

|xi=x−i=xC(q) = vξ(xi)|xi=xC(q) < 0. Hence,

xi = xC(q) must be at least a local maximizer of πi(xi,x−i;q) when x−i = xC(q).

When xi < [ r−1
r+1 ]1/rxC(q), ξN(xi) > 0 for all N ≤ M . Hence, we have ξ(xi) > 0

when xi < [ r−1
r+1 ]1/rxC(q), which means that �(xi) increases when xi < [ r−1

r+1 ]1/rxC(q).
Similarly, ξ(xi) < 0 when xi > [ r−1

r+1 (M − 1)]1/rxC(q), which means that �(xi) de-
creases when xi > [ r−1

r+1 (M − 1)]1/rxC(q). We next show that there exists a unique x ′ ∈
([ r−1

r+1 ]1/rxC(q), [ r−1
r+1 (M − 1)]1/rxC(q)) such that �(xi) increases (decreases) if and only

if xi < (>) x ′. For this purpose, it suffices to show that there exists a unique x ′ ∈
([ r−1

r+1 ]1/rxC(q), [ r−1
r+1 (M − 1)]1/rxC(q)), such that ξ(x ′) = 0.

First, such x ′ must exist by continuity of ξ(xi). As have been revealed, ξ(xi) > 0 when

xi < [ r−1
r+1 ]1/rxC(q); and ξ(xi) < 0 when xi < [ r−1

r+1 (M − 1)]1/rxC(q).

Second, the uniqueness of such x ′ can be verified as below. We have

∂3pi(xi,x−i;N)

∂x3
i

∣
∣
∣
∣
x−i=xC(q)

= r(N − 1)(xC(q))r

{

(r − 2)xr−3
i

−(r + 1)xr
i + (r − 1)(N − 1)(xC(q))r

[xr
i + (N − 1)(xC(q))r ]3

+ xr−2
i

−r(r + 1)xr−1
i [xr

i + (N − 1)(xC(q))r ] − 3rxr−1
i [−(r + 1)xr

i + (r − 1)(N − 1)(xC(q))r ]
[xr

i + (N − 1)(xC(q))r ]4

}

= r(N − 1)(xC(q))rxr−3
i

[xr
i + (N − 1)(xC(q))r ]3

{

(r − 2)[−(r + 1)xr
i + (r − 1)(N − 1)(xC(q))r ]

+ −r(r + 1)xr
i [xr

i + (N − 1)(xC(q))r ] − 3rxr
i [−(r + 1)xr

i + (r − 1)(N − 1)(xC(q))r ]
[xr

i + (N − 1)(xC(q))r ]
}

= r(N − 1)(xC(q))rxr−3
i

[xr
i + (N − 1)(xC(q))r ]3

{

(r − 2)[−(r + 1)xr
i + (r − 1)(N − 1)(xC(q))r ]

+ 2rxr
i

[xr
i + (N − 1)(xC(q))r ] [(r + 1)xr

i − (2r − 1)(N − 1)(xC(q))r ]
}

.
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Recall ξN(xi) = −(r+1)xr
i
+(r−1)(N−1)(xC(q))r

[xr
i
+(N−1)(xC(q))r ]3 rxr−2

i (N − 1)(xC(q))r . We then have

∂3pi(xi,x−i;N)

∂x3
i

∣
∣
∣
∣
x−i=xC(q)

= (r − 2)x−1
i ξN (xi)

+2r2(N − 1)(xC(q))rx2r−3
i

[xr
i + (N − 1)(xC(q))r ]4

[(r + 1)xr
i − (2r − 1)(N − 1)(xC(q))r ].

We now claim [(r + 1)xr
i − (2r − 1)(N − 1)(xC(q))r ] is negative for all xi ≤ [ r−1

r+1 (M −
1)]1/rxC(q). A detailed proof is as follows. From xi ≤ [ r−1

r+1 (M − 1)]1/rxC(q), we have
(r + 1)xr

i ≤ (r − 1)(M − 1)(xC(q))r . To show (r + 1)xr
i − (2r − 1)(N − 1)(xC(q))r < 0, it

suffices to show (r−1)(M−1) < (2r−1)(N −1) when N = 2, which requires r < 1+ 1
M−3 .

This holds as r < 1 + 1
M−1 .

We now show that at any xi ∈ ([ r−1
r+1 ]1/rxC(q), [ r−1

r+1 (M −1)]1/rxC(q)) such that ξ(xi) = 0,

ξ(xi) must be locally decreasing. Note ∂3pi (xi ,x−i ;N)

∂x3
i

|x−i=xC(q) = (r − 2)x−1
i ξN (xi) + AN(xi)

where AN(xi) = 2r2(N−1)(xC(q))r x2r−3
i

[xr
i
+(N−1)(xC(q))r ]4 [(r + 1)xr

i − (2r − 1)(N − 1)(xC(q))r ] < 0. Thus

∂ξ(xi)

∂xi

= (r − 2)x−1
i

M∑

N=1

CN−1
M−1q

N−1(1 − q)M−NξN(xi) +
M∑

N=1

CN−1
M−1q

N−1(1 − q)M−NAN(xi)

= (r − 2)x−1
i ξ(xi) +

M∑

N=1

CN−1
M−1q

N−1(1 − q)M−NAN(xi)

=
M∑

N=1

CN−1
M−1q

N−1(1 − q)M−NAN(xi) < 0.

We are now ready to show the uniqueness of x ′ by contradiction. Suppose that there
exists more than one zero points x ′ and x ′′ for ξ(xi) with x ′ �= x ′′. Because ξ(xi) must be
locally decreasing, then there must exist at least another zero point x ′′′ ∈ (x ′, x ′′) at which
ξ(xi) must be locally increasing. This cannot be true. Contradiction thus results. Hence, such
a zero point x ′ of ξ(xi) must be unique.

Recall �(xi) increases (decreases) if and only if xi < (>) x ′ and it reaches its maximum
at x ′. Note ∂πi (xi ,x−i ;q)

∂xi
|x−i=xC(q) = v�(xi) − 1 and �(0) = 0. ∂πi (xi ,x−i ;q)

∂xi
|x−i=xC(q) at most

has two zero points. Note xi = xC(q) must be a zero point for ∂πi (xi ,x−i ;q)

∂xi
|x−i=xC(q) by defini-

tion. One can further verify that πi(xC(q),x−i;q)|x−i=xC(q) > πi(0,x−i;q)|x−i=xC(q) = v(1−
q)M−1 as follows. We have πi(xC(q),x−i;q)|x−i=xC(q) = ∑M

N=1 CN−1
M−1q

N−1(1−q)M−N 1
N

v−
xC(q) = ∑M

N=1 CN−1
M−1q

N−1(1 − q)M−N 1
N

v − r
∑M

N=1 CN−1
M−1q

N−1(1 − q)M−N 1
N

(1 − 1
N

)v =
v(1−q)M−1 +∑M

N=2 CN−1
M−1q

N−1(1−q)M−N [ 1
N

− r 1
N

(1− 1
N

)]v. The terms 1
N

− r 1
N

(1− 1
N

),

N ≥ 2 are apparently positive because r(1 − 1
N

) ≤ M
M−1 × N−1

N
� 1 if and only if N � M .

Since πi(xC(q),x−i;q)|x−i=xC(q) > πi(0,x−i;q)|x−i=xC(q),
∂πi (xi ,x−i ;q)

∂xi
|x−i=xC(q) must

have two zero points, and xi = xC(q) is the local maximum point of πi(xi,x−i;q)|x−i=xC(q)

and the other is the local minimum point. Hence, xi = xC(q) is the global best response. �
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Proof of Claim 2 We first consider the contest with disclosure. When N = 1, the en-
trant clearly exerts zero effort. When N ≥ 2, we claim that all entrants exert an equilib-
rium effort of x(N) = H−1(N−1

N2 ) = − 1
α

ln(1 − N−1
N2 α). To prove this claim, we need to

show that when xj = x(N) for j �= i, xi = x(N) maximizes πi = pi(xi,x−i;N)v − xi =
eαxi −1

(eαxi −1)+(N−1)(eαx(N)−1)
− xi .

∂πi

∂xi
= (N − 1)(eαx(N) − 1)α eαxi

[(eαxi −1)+(N−1)(eαx(N)−1)]2 − 1 =
( N−1

N
)2α

1− N−1
N2 α

α eαxi

[eαxi −�]2 − 1 with � = 1 − ( N−1
N

)2α

1− N−1
N2 α

∈ (0,1) as α ∈ (0,1]. Hence, ∂πi

∂xi
|xi=0 =

1− N−1
N2 α

( N−1
N

)2 − 1 > 0. Let �(y) = y

[y−�]2 , where y ≥ 1. We have d�
dy

= 1
[y−�]2 − 2 y

[y−�]3 =
−1

[y−�]3 [y + �] < 0, which implies that ∂πi

∂xi
decreases with xi . Hence, the solution of x(N)

from first order condition (3) is the unique global maximizer.
We now consider the contest with concealment. We will show that when M ≤ 4, all

entrants exert an equilibrium effort of xC(q) of (7), i.e.

xC(q) = − 1

α
ln

[

1 − α

M∑

N=1

CN−1
M−1q

N−1(1 − q)M−N N − 1

N2

]

.

Since N−1
N2 = 1

N
(1 − 1

N
) decreases with N ≥ 2 and

∑M

N=1 CN−1
M−1q

N−1(1 − q)M−N = 1,

xC(q) ≤ x(2) = − 1
α

ln[1 − α
4 ]. Hence, f (xC(q)) = eαxC(q) − 1 ≤ eαx(2) − 1 = α

4
1− α

4
≤ 1

3 ,

because α ∈ (0,1]. It further implies that (N − 1)f (xC(q)) ≤ 1 as long as N ≤ M ≤ 4.
We are now ready to show that when xj = xC(q) for j �= i, xi = xC(q) maximizes
πi(xi,x−i;q) = ∑M

N=1 CN−1
M−1q

N−1(1 − q)M−Npi(xi,x−i;N)v − xi = ∑M

N=1 CN−1
M−1q

N−1(1 −
q)M−N eαxi −1

(eαxi −1)+(N−1)(eαxC (q)−1)
− xi . It suffices to show that πi(xi,x−i;q) is concave in xi .

∂πi (xi ,x−i ;q)

∂xi
= ∑M

N=1 CN−1
M−1q

N−1(1 − q)M−N ∂	N

∂xi
− 1, where 	N = eαxi −1

(eαxi −1)+(N−1)(eαxC (q)−1)
.

We have ∂	N

∂xi
= (N − 1)(eαxC(q) − 1)α eαxi

[eαxi −�N ]2 , where �N = 1 − (N − 1)f (xC(q)) =
1 − (N − 1)(eαxC(q) − 1) ∈ [0,1] since N ≤ M ≤ 4. Note that eαxi

[eαxi −�N ]2 decreases with xi

when �N ∈ [0,1]. The concavity of πi(xi,x−i;q) with respect to xi is thus guaranteed when
xj = xC(q) for j �= i. Because xC(q) > 0, πi(xi,x−i;q) increases with xi when xi ≤ xC(q)

and πi(xi,x−i;q) decreases with xi when xi ≥ xC(q), which guarantees that the solution to
(8) constitutes a symmetric equilibrium. The uniqueness of symmetric equilibrium is im-
plied by the monotonicity of H(·). �
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