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Abstract. This paper investigates the desirability of adding a preliminary elimination stage for
output maximization in a winner-take-all contest framework in which the contestant who achieves
the highest (random) output wins. We find that, generally, the desirability of an elimination stage
does not monotonically depend on the productivity of the effort; adding a preliminary stage can
improve output for both concave and convex production functions. This result contrasts sharply
with current insight from effort maximization, which argues that adding a preliminary stage can
increase effort supply only if the production function is concave.

1. INTRODUCTION

A contest is a situation in which economic entities expend costly effort to win a
valuable prize. Contests have been extensively studied in a variety of contexts,
such as rent seeking, lobbying, political campaigns, sports, R&D races, com-
petitive procurement and college admissions. Contest design, which is the crea-
tion of the rules that define which contestants will be victorious, has been studied
in a huge body of economic literature.1 A growing strand of this literature has
recognized multi-stage elimination contests in which there are preliminary stages
and a final stage.2 The contestants are successively eliminated from the race
through earlier stages, and only the survivors in each stage compete against
others to advance further in the competition.

Various examples are available to illustrate multi-stage elimination contests.
For example, the International Olympic Commitee selected five cities (London,
Madrid, Moscow, New York and Paris) out of nine as ‘finalists’ for the 2012
Summer Olympic Games. In the World Cup, teams are divided into different
regional groups in preliminary competitions, and the winners of these compe-
titions are chosen for the final competition (Amegashie, 1999; Stein and
Rapoport, 2005). Similarly, when recruiting new faculty members, university
departments interview a large number of candidates, but only a small subset can
be invited for a campus visit (Fu and Lu, 2012). In the early stages of these
scenarios, contestants mainly strive to avoid elimination.
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An important dimension of this aspect of elimination contests, which we call
the ‘shortlisting structure’, involves whether and how to segment the contestant
population, how to choose the number of stages, and how to distribute the prize
money among a set of prizes of differing ranks in a multi-stage elimination
contest. In the literature, this strand can be traced back to Rosen’s seminal paper
(1986), in which he searches for a reward scheme in a 2N contestant N-stage
sequential contest. Gradstein (1998) makes an initial attempt to conduct a
comparative analysis of rent-seeking contests in terms of the amount and timing
of effort they elicit from participants. Later, Amegashie (1999) examines the
practice of selecting finalists in rent-seeking contests based on the rent-seekers’
efforts in a preliminary competition. Amegashie (2000) also compares the two
elimination procedures (pooling contestants and matching contestants) in a
two-stage Tullock contest with linear contest technology, and concludes that
pooling competition generates more effort. Fu and Lu (2012) investigate the
optimal structure of a multi-stage sequential elimination contest. Similar to
Amegashie (1999, 2000), Gradstein and Konrad (1999) and many others, the
contest success function we use for the winner selection mechanism in each stage
is Tullock’s probabilistic model (Tullock, 1980).3

While contestants are assumed to take the prize as given, a contest organizer
may wish to implement an optimal structure to achieve a given objective. An
employer, for instance, may wish to maximize expected total output from all
employees; a government with firms in a patent race or a firm with several R&D
scientists may wish to maximize the performance of the winner; in sports, a team
will seek to maximize the performance of all the contestants. Indeed, most work
on contest design in the past decades has focused on the maximization of total
effort by contenders. In a two-stage competition of Amegashie (1999), it is
shown that if the discrimination power is either very high in both stages or,
in the final stage, is sufficiently higher than the discrimination power in the
preliminary stage, the two-stage design results in lower total effort than in the
single-stage design. Gradstein and Konrad (1999) find that the simultaneous
(single-stage) contest of all participants is the effort-maximizing contest struc-
ture when the discrimination power is greater than one, and the pairwise
multistage contest is the effort-maximizing structure when the discrimination
power is smaller than one.4

Because the decision-maker cannot reward contestants based on their effort
(because this is neither observable nor verifiable, as pointed out in the moral
hazard model), she ranks these contestants by their perceived output in descend-
ing order. That is, the higher the perceived output, the better a contestant’s rank.
With regard to a contest organizer’s objective, a more realistic situation is that
the decision-maker strictly prefers higher expected total output. As an employer

3 The basic Tullock contest model measures the impact of a contestant’s effort on the winning
probabilities through a power function of his effort; that is, xr. The parameter r is a measure of the
discrimination of the selection mechanism.
4 With discrimination exponents r greater (less) than or equal to one, the convex (concave) impact
function then exhibits increasing (decreasing) return on effort.
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who aims at maximizing profit with fixed production cost, for example, the
decision-maker (referred to herein as ‘she’) is more concerned about the firm’s
overall production than about how much effort she can elicit from employees,
because productivity is not always positively related to effort. A smart
employee, for instance, can be very productive with a small effort. In a govern-
mental procurement process for research proposals, the government is more
interested in the overall scientific achievements of research institutes than in the
effort level; one department may not succeed, even with a lot of effort, while
another might be innovative with little effort.

Based on the above ideas, structural design that maximizes overall expected
total output is the focal point of this paper. We study the optimal design of
contests from the perspective of output maximization, focusing on two issues: (i)
given the number of shortlists at the preliminary stage, how should the contest
organizer design the group size; and (ii) comparing a two-stage contest with a
single-stage contest, should the contest organizer add a preliminary elimination
stage. Applying the framework of Amegashie (1999), our results indicate that in
a two-stage contest with a preliminary stage, the optimal structure is each
competing group with equivalent competitors. Given the total number of con-
testants and the number of finalists in the preliminary stage, the total output
level does not monotonically depend on the productivity of the effort, r. Adding
a preliminary stage can improve output for both concave and convex produc-
tion functions. When the productivity level is so low that it converges to zero,
adding an optimally-designed preliminary stage leads to more expected output,
because the output level for each individual converges to one regardless of his
or her effort. Moreover, with a sufficiently large number of contestants, when
0 < r < 1, the single-stage contest emerges as the output-maximizing structure.
However, we can always find a small right neighbourhood of r = 1 such that
within this neighbourhood, the two-stage contest is the output-maximizing
contest structure, because the convex (concave) production function transfers
effort into output increasingly (decreasingly). These results absolutely contrast
to the current insight on effort maximization, which indicates that adding a
preliminary stage can never benefit expected effort when production function is
convex.5

The paper proceeds as follows. In Section 2 we set up the model of output
competition. Section 3 lays out the two-stage contest framework, elaborates on
the optimal output-maximizing contest structure, and compares a two-stage
contest with a single-stage pooling contest. Section 4 concludes.

2. A CONTEST MODEL OF OUTPUT COMPETITION

There are N (�2) risk-netural contestants, who produce random outputs from
their effort input, xi, following a random production function as below:

5 Amegashie (1999) and Gradstein and Konrad (1999) use different frameworks, while both of their
results show that a preliminary stage could not improve the total effort when the impact function is
convex.
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In equation 1, xi
r catches the deterministic part of the production process that

is solely determined by the effort, xi, while the noise term, ei, catches the ran-
domness in the production process. The specification of equation 1 represents a
standard setting of moral hazard in which contestants’ effort, xi, is not observ-
able, while their output levels yi are observable. We assume that the idiosyncratic
noises ε � εi i, ∈{ }N are independently and identically distributed with zero
means.

While effort is not observable but output is observable, the incentive scheme
that induces effort and output must be based on observable outputs. A winning
rule that is based on the ranking of the outputs is natural: the best performer
wins the contest. In the specification of equation 1, the best performer is the
contestant who achieves the highest output, yi. Many sports, as well as labour
competitions, demonstrate this winning rule. A weightlifting competition
honours the player who raises the heaviest successfully, and a company awards
the branch that achieves the highest profit.

In this paper, we adopt such a winning rule and study how an additional
elimination stage that shortlists finalists would affect the total output. Ties are
broken randomly. We use N to denote the set of all contestants. Suppose W is
a subgroup of N. We use xW to denote the effort vector of the contestants in
group W.

LEMMA 1. For any given xW � 0 such that ∑ >∈j j
rxΩ 0, the likelihood that a

contestant i ∈ W wins the competition is:

p i
x

x
ii

r

j
r
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x NW
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W W( ) = ∀ ∈ ∀ ∈
∈∑

, , . (2)

The proof is omitted but is available from McFadden (1973, 1974). The
likelihood that a contestant i ∈ W wins is simply the probability that his output
is the highest among all contestants in group W (the contestant is herein referred
to as ‘he’). This result shows that a generalized Tullock success function can be
generated by designating the contestant with the highest output to be the winner.

The contest organizer has a total budget V, which can be used as a winner-
take-all prize. In a single-stage winner-take-all contest, a representative contest-
ant i maximizes his payoff of

π x p i V x
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V xi i i
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j
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−

∈

( ) = ( ) − = −
∑

To ensure the existence of pure strategy equilibria in each such contest

we impose the restriction r
N

∈ +
−( ⎤
⎦⎥

0 1
1

1
, . Applying standard procedure, the

symmetric equilibrium is
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x N
N N

rVi* .( ) = −( )1
1

1

The total expected effort is

E N Nx N
N

rVs i* * .( ) = ( ) = −( )1
1

(3)

The total expected output is

Y N Nx N N
N N

rVs i
r

r

* * .( ) = ( ) = −( )⎡
⎣⎢

⎤
⎦⎥

1
1

1
(4)

3. A TWO-STAGE CONTEST

Following Amegashie (1999), we consider the following two-stage contest. In
the preliminary contest, g � 1 finalists are to be chosen from the N contestants,
where g � N. There are Nj (>1) contestants in group j, j = 1, . . ., g. We have
SjNj = N. Every contestant competes against the other Nj - 1 contestants in his
group j for the ticket to the final stage. After the preliminary competitions that
select the g finalists, they enter the second-round competition. The winner
receives the prize V. For the time being, we assume that the number of finalists
chosen from the preliminary competition is given, which means g is exogenous.

We solve the game by backward induction. The second-stage competion
among the g finalists can be solved as a standard single-period winner-take-all
contest. As in Section 2, the second-stage equilibrium effort is

x g
g g

rVg* .( ) = −⎛⎝⎜
⎞
⎠⎟

1
1

1

The total expected effort of the second period is

E g gx g
g

rVg g* * .( ) = ( ) = −⎛⎝⎜
⎞
⎠⎟1

1
(5)

The expected payoff of a finalist is

π g
V
g g

r* .= − −⎛⎝⎜
⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥
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1

The total expected output of the second period is

Y g gx g g
g g

rVg i
r

r

* * .( ) = ( ) = −⎛⎝⎜
⎞
⎠⎟

⎡
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⎤
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1
1

1
(6)

In the preliminary stage, the prize is simply π g* for every subgroup j. Similarly,
we can solve for the equilibrium effort and output as below:
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The total expected effort of first period from group j is
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The total expected output of the first period is
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3.1. Effort comparison

We start the analysis of the optimal contest structure from the perspective of
effort maximization. Combining equations 5 and 7, the grand total effort is

E E g E rV
g g g

r
N

t g
j
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∑
j

. (9)

LEMMA 2. Given g, Et* is maximized when N k
N
g

jj = = ∀, .

Proof. We ignore the integer problem of Nj. Note π g* > 0, and, thus,
1

1 1
1

0
g g
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⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥
> . This is guaranteed by the range of r. Clearly, Et* is maxi-

mized when Φ = ∑ −⎛
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⎞
⎠⎟j

jN
1

1 is maximized subject to SjNj = N, Nj � 1. We have

∂
∂

=
Φ
N Nj j

1
2

, which strictly decreases with Nj. Whenever Nj1 > Nj2,
∂
∂

<
∂
∂

Φ Φ
N Nj j1 2

.

We can rebalance Nj1 and Nj2 to make Nj1 lower and Nj2 higher; this would lead
to higher F.
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According to Lemma 2, to determine whether an optimally-designed two-
stage contest would increase the expected effort, we can focus on subgroups of
even size. Note that when g = 1 or N, the two-stage contest coincides with the
single-stage contest. Thus, an optimally-designed two-stage contest cannot be
strictly worse than a single-stage contest.

When N k
N
g

jj = = ∀, , the grand total effort is

E E g E rV
g k

r
k g

t g* * *= ( ) + = −⎛⎝⎜
⎞
⎠⎟ + −( )⎡

⎣⎢
⎤
⎦⎥
− −( ) −⎛⎝⎜

⎞
⎠⎟1 1

1
1

1
1

1
1

1{{ }. (10)

When k is an integer, we say that the preliminary elimination stage with
subgroup size k is feasible.

Comparing equations 3 and 10, we see that when r E Et s= =1, * *. Note that

1
1

1
1

1
1

1
1

−⎛⎝⎜
⎞
⎠⎟ + −( )⎡

⎣⎢
⎤
⎦⎥
− −( ) −⎛⎝⎜

⎞
⎠⎟g k

r
k g

strictly decreases with r when g � 1 and

g � N; thus,

E E r g Nt s* * , .> <( ) ⇔ < >( ) ∀ ≤ ≤ −1 2 1 (11)

Note that equation 11 holds for any g such that 2 � g � N - 1. We see that
when r > 1, adding a preliminary elimination stage never increases the expected
effort. When r < 1, any non-trivial preliminary elimination contest with even
subgroups would increase the total expected effort. These results are summa-
rized in the following proposition.

PROPOSITION 1. (i) When r > 1, a preliminary elimination stage can never
induce more expected effort; and (ii) when r < 1, any feasible non-trivial prelimi-
nary elimination contest with even subgroups would increase total expected effort.

That is, to maximize total effort, the contest organizer will prefer a two-stage
contest if and only if r < 1. She is indifferent between the two contest designs
when r = 1.

The results of effort-maximizing contests have been carefully studied by
Gradstein and Konrad (1999), who make an effort comparison between more
general pairwise contests and simultaneous contests. In the following section, we
will make a comparison in terms of total output.

3.2. Output comparison

Recall that when g = 1 or N, a two-stage contest is equivalent to a single-stage
contest. This means that an optimally-designed contest can never be strictly
worse than a single-stage contest.

In Subsection 3.1, we showed that a preliminary stage can only help when
r < 1 if expected effort is the concern. In this subsection, we show that an
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optimally-designed preliminary stage can further help when r > 1 if, instead,
output is the concern. For this purpose, we consider a preliminary stage with
g � 2 even subgroups. Using the same procedure as for Lemma 2, we can also

show that Yt* is maximized when N k
N
g

jj = = ∀, . The total expected output of

the first period is Y gY k r gk
k k

j g
r

r

1 1
1

1
1* * ( *),= ( ) = −( )⎡

⎣⎢
⎤
⎦⎥

π . Therefore, the grand

total output is

Y Y g Y rV g
g g

N
N g g r g

N
t g

r
r
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⎞
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⎡
⎣⎢

⎤
⎦⎥
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1 1
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r
⎡
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⎤
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⎧
⎨
⎩

⎫
⎬
⎭

. (12)

To compare the total output of a two-stage contest with a single-stage contest,
let

Δ r Y Y Vr

N
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r r
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⎦⎥
−
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g
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2
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LEMMA 3. (i) For fixed N and g, lim ( )r r g→ + = −0 Δ ; (ii) for fixed g � 2, when
N → •, D(r) → + •,"r < 1; and (iii) for fixed g � 2, when N → •,

Δ r g
g
g

r
r

( )→ −
−⎡

⎣⎢
⎤
⎦⎥
∀ >

1
1

2
, .

Proof. Clearly, for fixed N and g, lim ( )r

r

r g
g
g

g→ + = −
−⎡

⎣⎢
⎤
⎦⎥
= −0 2

1
Δ . For fixed

g � 2, when N → •, the order of D(r) is N r g g
g
g

r r
r

1
2

1 1 1 1
1− − − −( ){ }− −⎡
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⎤
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Thus Δ r g
g
g

r

( )→ −
−⎡

⎣⎢
⎤
⎦⎥
<

1
0

2
when r > 1 and D(r) → +• when r < 1.

Lemma 3 leads to the results in the following proposition.

PROPOSITION 2. (i) For fixed N and g, there is a small right neighbourhood
of r = 0 such that adding a preliminary stage with g even subgroups leads to more
expected output. (ii) Let N = kg, where g � 2. For any r ∈ (0,1), adding a pre-
liminary stage with g even subgroups leads to less expected output when k is
sufficiently large.

When r ∈ (0, 1), Proposition 1 shows that any feasible non-trivial preliminary
elimination contest with even subgroups would increase the total expected
effort. Proposition 2 demonstrates that adding a preliminary stage may have an
opposite impact on expected output if the productivity level is sufficiently small.
However, when the number of contestants is large, adding a preliminary stage
with even grouping may, indeed, negatively affect the expected output.
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COROLLARY 1. For any N � 4, there is a small right neighbourhood of r = 0
such that adding an optimaly-designed preliminary stage leads to more expected
output.

Proof. If N is an even number, take g = N/2. Proposition 2 implies that the
claim is true.

If N is an odd number, take g = (N - 1)/2. Assign 2 contestants to the first
g - 1 groups and 3 contestants to the last group. It is easy to verify that the
group with 3 contestants generates more output than any group with 2 contest-
ants. Thus, the contest generates more output than a contest with N - 1 con-
testants who are evenly divided into g = (N - 1)/2 groups. Proposition 2 can be
applied to the later contest for the existence of the small neighbourhood of r = 0
such that the original grouping leads to higher output. Clearly, the obtained
neighbourhoods apply to the optimal grouping (the optimal g and the optimal
sizes of the subgroups) in the preliminary stage.

Lemma(iii) suggests that for any fixed r > 1 when N is large, adding a pre-
liminary stage with even grouping definitely increases the expected output.

However, as N increases, the eligible upper bound for r, (i.e. 1
1

1
+

−N
)

decreases.6 For any fixed r > 1, we may end up with r
N

> +
−

1
1

1
for an N that is

sufficiently large, as required by Lemma 3(iii). Nevertheless, it is still true
that for any g � 2, when N is sufficiently large, we can find a small right
neighbourhood of r = 1 that depends on N, such that as long as r falls into this
neighbourhood, adding a preliminary stage with even groups, indeed, increases
the expected output.

The arguments are more elaborate and rely on the property of
d r

dr
Δ( )

at r = 1.

Note:

d r
dr

N
N
N

N
N

g
g
g

g
g

N
N gr rΔ( )
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−( ) −( ) − −⎛
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⎞
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⎞
⎠⎟ −

−
ln ln

1 1 1 1
2 2 2 2

(( ) − −( )[ ]⎡
⎣⎢

⎤
⎦⎥
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−

g r g
N g

N g N g g r g
r g

g

r1

1
1

2

2ln ln ln
rr g −( ){ }1

.

LEMMA 4. For fixed g � 2, when N → •,
d r

dr r

Δ( )
→ −∞

=1
.

6 Recall that our analysis is restricted to pure strategies; that is, r
N

≤ +
−

1
1

1
. We require a

nonnegative expected payoff in both contest structures.
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Proof. For fixed g � 2, when N → •, the order of
d r

dr r

Δ( )
=1

is

1
1

g
N−⎛

⎝⎜
⎞
⎠⎟ → −∞ln .

Note that when r = 1, we have D(1) = 0. Thus, Lemma 4 means that for any
given g, when the number of contestants (N) is sufficiently large, there exists a
small eN such that when r ∈ (1, 1 + eN), D(r) < 0. In other words, there exist
convex production functions such that adding a preliminary stage with even
subgroups of size N/g would increase the total expected output when N is
sufficiently large.

PROPOSITION 3. When N is sufficiently large, there exists a small eN such that
when r ∈ (1, 1 + eN), the optimally-designed preliminary stage leads to higher
expected output.

Proof. Take g = 2. When N is an even number, Lemma 4 means that there
exists a small eN such that when r ∈ (1, 1 + eN), adding a preliminary stage with
even subgroups of size N/2 would increase the total expected output.

When N is an odd number, apply Lemma 4 to N - 1 and N + 1, which are
even numbers. There exists a common neighbourhood (1, 1 + e) such that
when r ∈ (1, 1 + e), adding a preliminary stage with two even subgroups would
increase the total expected output. Consider the following grouping of N con-

testants: Assign
N −1

2
contestants to group 1, and

N +1
2

contestants to group 2.

Clearly, the expected output from this grouping dominates the smaller one of
the outputs when there are N - 1 and N + 1 contestants who are evenly divided
into two subgroups. Thus, when r ∈ (1, 1 + e), the expected output from this
grouping dominates that from a single-stage contest.

Clearly, the obtained neighbourhoods apply to the optimal grouping (the
optimal g and the optimal sizes of the subgroups) in the preliminary stage.

Proposition 3 illustrates a new insight into the desirability of a preliminary
stage in output maximization, which diverges from the insight revealed by
Proposition 1 for effort maximization. While Proposition 1 shows that adding a
preliminary stage can never benefit expected effort when the production func-
tion is convex, Proposition 3 shows that even with a convex production func-
tion, adding an optimally-designed preliminary stage can still benefit expected
output when the number of contestants is big.

We now briefly interpret this divergence. The exponent r measures the
productivity of the production process. When r is smaller than one, a two-stage
contest will induce higher total effort and a single-stage contest will induce
higher total output, because a concave production technology transfers effort
into output compressively. If r is greater than one, however, a two-stage contest
will result in less total effort but higher total output than a single-stage contest,
because a convex production technology expansively transfers effort into
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output. Moreover, when productivity is so small that it converges to zero, with
each contestant’s equilibrium effort x → 0, output xr → 1, adding a preliminary
stage always induces higher value in terms of both effort and output, because no
matter how much effort players expend, they will converge to a constant output
level of one. Therefore, for a fixed number of contestants, the more stages, the
higher total output. The desirability of an elimination stage depends crucially on
the productivity of the effort; adding a preliminary stage can improve output for
both concave and convex production functions.

Our results provide contest organizers with guidelines for the optimal contest
design. With a large pool of high-producing contestants, an output-maximizing
contest organizer should add a preliminary stage and divide contestants into
even groups; however, when contestants are lower-producing, a pooling contest
will be the optimal choice. These results are in contrast to the insight on effort
maximization, which holds that adding a preliminary stage can never benefit
expected effort when the production function is convex. With a convex impact
function, a more discriminatory contest means that a better performance can be
translated into a higher likehood of winning. Faced with a larger number of
competitors, each contestant will bid more aggressively in a one-stage pooling
contest, which elicits higher total expected effort.

To compare the differences between these maximization targets, Figure 1
illustrates one such case.

4. CONCLUSION

This paper studies the issue of optimal structure in contests. In contrast to
previous literature, to attain maximum effort by contestants, we focus on a
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Figure 1. Effort versus output maximization
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structural design that maximizes total expected output. In a winner-take-all
contest framework, we explore whether the contest organizer would benefit by
adding a preliminary elimination stage for output maximization. Our results
indicate that a two-stage contest can improve output for both concave and
convex production functions, which is the opposite of the insight on effort
maximization. These results can also easily be extended to multi-stage contests
for output maximization.

In this paper, we assumed that the number of finalists in the preliminary stage
is given. In many situations, it is more realistic to assume that the organizer
rather endogenously chooses the number of finalists, g, in the preliminary stage.
Providing the continuity of g, although analytical diffculties prevent us from
solving the form explicitly, we can show that there must exist an optimal number
of shortlists that maximize total output in these two stages, as discussed in
Amegashie (1999).

Furthermore, our setting (i.e. adding a preliminary stage) is only one form
of output-maximization contest design. Other examples include the settings of
Appelbaum and Katz (1987), who study the optimal prize size, Baye et al.
(1993), who focus on the optimal admittance to a contest, and Moldovanu and
Sela (2001), who investigate the optimal allocation of multiple nonidentical
prizes. Various issues related to the optimal design of contests in these diverse
settings remain open, and they deserve to be explored seriously in the future.
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