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a b s t r a c t

This paper considers a regular conflict network model with the returns to scale technology. Agents are
asymmetric in terms of their effort costs. We show that the impact of the returns to scale technology on
agents’ behaviors crucially depends on the cost asymmetry among agents. When the cost asymmetry
is sufficiently high, both individual total efforts and the conflict intensity can have an inverted U
relationship with the level of returns to scale.
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1. Introduction

Conflicts in social networks are widely observed in real-life
ituations, which range from sports, warfare, trade negotiations
o firm competitions in various markets. To capture the strategic
nteractions among parties in these conflict environments, the
rowing literature has developed conflict network models by
mbedding multi-battle contests into network structures.1 Unlike

traditional contest models which typically ignore the interdepen-
dencies between different conflicts, these models are concerning
the interrelationships between different conflicts.

Among all possible network structures, a regular network is
perhaps the most classical one in which each agent is involved
in the same number of battles. For instance, in various intergov-
ernmental organizations (e.g., World Trade Organization, World
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(72122017 and 71773087), Fok Ying Tong Education Foundation (171076), ‘‘the
Fundamental Research Funds for the Central Universities’’ (2042022kf0037), and
Youth Scholar Team in Social Sciences of Wuhan University ‘‘New perspectives
for development economics research’’.
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1 See, for example, Franke and Özuürk (2015), König et al. (2017)
nd Kimbrough et al. (2020).
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304-4068/© 2023 Elsevier B.V. All rights reserved.
Health Organization), each country is expected to negotiate bilat-
erally with all other countries in international affairs negotiations.
Similarly, each firm is simultaneously competing with all other
rivals in different product markets or geographical areas. In such
regular conflict environments, there is no doubt that the conflict
technology plays an important role in influencing the strategic
interactions among the agents. Jiao et al. (2019) formally model
the conflict technology using the degree of returns to scale in
a general Tullock contest model. By focusing on the complete
bipartite networks, they have made the first attempt to address
how the conflict technology may affect agents’ behaviors. In this
study, we investigate this question further in regular networks,
where each agent participates in the same number of bilateral
conflicts.

In real-life situations, it is possible for some agents to have
different capabilities than others. In international trade negotia-
tions, some country has a stronger bargaining power compared
to others. In business competition, when a new entrant enters
a market which has been occupied by several dominant firms,
it may struggle to survive. Such observations naturally raise the
following questions: Given the ability asymmetry, what is the
relationship between total efforts of different agents and the
conflict technology? Moreover, how does this relation depend on
the degree of asymmetry among agents?

To address these questions, we set up a regular conflict net-
work model with the returns to scale technology. There is a
singular agent, whose ability is different from those of others in
terms of effort cost. Those remaining agents who have the same
abilities are referred to as the common agents. We first character-
ize a unique pure-strategy Nash equilibrium, and further analyze

https://doi.org/10.1016/j.jmateco.2023.102827
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http://crossmark.crossref.org/dialog/?doi=10.1016/j.jmateco.2023.102827&domain=pdf
mailto:2016300070049@whu.edu.cn
mailto:jiaoq3@mail.sysu.edu.cn
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ow the conflict technology affects the equilibrium behavior of
ach agent.
Our key finding is that the effect of returns to scale technology

n agents’ equilibrium behaviors depends critically on the degree
f asymmetry among agents. As the returns to scale technol-
gy increases, the total effort of each common agent always
ncreases, but the total effort of the singular agent may change
on-monotonically. In particular, when agents differ sufficiently
n cost asymmetry, there exists an inverted U relationship be-
ween the total effort of the singular agent and the level of returns
o scale. We further establish a similar inverted U relationship
etween the conflict intensity and the returns to scale technology,
hen the singular agent is extremely strong.
The intuition behind the above results can be explained by

competition effect, a discouragement effect and a substitution
ffect. A higher level of returns to scale intensifies competition
mong all agents, therefore causing them to exert more effort
competition effect). The weaker agent in a bilateral conflict is
ess likely to win as the level of returns to scale increases, and
ence she is discouraged from investing further and tends to
ower her own effort level (discouragement effect). Since each
ommon agent has to compete with many identical rivals, she
as an incentive to increase the efforts in those conflicts and
elatively decrease the effort in the conflict against the singular
gent (substitution effect). For the singular agent, the competition
ffect is dominated by the discouragement effect when the cost
symmetry is sufficiently high, which results in an inverted U
elationship between her individual total effort and the returns to
cale technology. For a common agent, although the substitution
ffect is ambiguous, the aggregate effect always raises her total
ffort as the level of returns to scale increases. Furthermore, since
he total effort of the stronger agent(s) always accounts for a large
ercentage of the conflict intensity, the conflict intensity tends
o have a similar shape with the individual total effort of the
tronger agent(s).
There is a burgeoning literature that studies conflicts among

gents using network models. Franke and Özuürk (2015) develop
model of conflict networks, in which players are involved in

everal bilateral conflicts and each bilateral conflict is a lottery
ontest (i.e., r = 1). They examine how the conflict inten-
ity can be affected by the network structure. Jiao et al. (2019)
xtend their framework by allowing for a general Tullock con-
est with the returns to scale technology. They investigate the
elationship between the conflict intensity and the returns to
cale technology in bipartite conflict networks.2 Xu et al. (2022)
onsider a more general conflict network model and character-
ze the set of pure-strategy equilibria. Bozbay and Vesperoni
2018) axiomatically characterize a contest success function for
etworks. Kovenock and Roberson (2018) investigate the attack
nd defense of multiple networks of targets with intra network
trategic complementarity among targets. Dziubiński et al. (2021)
ropose a dynamic model of conflict networks and show that
he dynamics of conflicts are shaped by factors including the

2 Both this paper and Jiao et al. (2019) find an inverted U relationship
etween equilibrium efforts and the returns to scale technology. They explore
he same question from different perspectives. Unlike (Jiao et al., 2019), which
nalyzes a complete bipartite conflict network with structure asymmetry, this
aper studies a symmetric network structure with the heterogeneity of agents.
n Jiao et al. (2019), as long as the structure asymmetry is sufficiently large,
he individual total effort of each agent has an inverted U relationship with the
eturns to scale technology. In this paper, we find that, regardless of how large
he cost asymmetry is, the total effort of some agents does not show such an
nverted U relationship. Furthermore, Jiao et al. (2019) show that the conflict
ntensity has an inverted U relationship with the returns to scale technology
hen the structure asymmetry is sufficiently large. While we find that the
onflict intensity may be still increasing in the level of returns to scale even
hen the cost asymmetry is sufficiently large.
 d

2

technology of war, resources and contiguity network. Cortes-
Corrales and Gorny (2022) study how changing the strength of
other symmetric agents induces knock-on effects throughout a
multi-sided-weighted network of conflicts.

Our work is also related to the contest literature that stud-
ies the effect of the returns to scale technology on equilibrium
efforts. A handful of studies allow the dissipation factor to be a
primary instrument of the contest designer.3 Nti (2004) analyzes
he asymmetric valuations situation and determines the optimal
ontest technology for different profiles of player valuations. In
general Tullock contest with two asymmetric players, Wang

2010) shows that the contest designer adopts a lower level
f discriminatory power r that maximizes the aggregate effort,
s the players become more heterogeneous. For contests with
ndogenous entry, Fu et al. (2015) show that an increase in the
iscriminatory power r may result in fewer entrants. Neverthe-
ess, there also exists an interior optimum level of discriminatory
ower, which maximizes the aggregate effort. Letina et al. (2023)
tudy the optimal design of the contest success function, and
how that the effort-maximizing contest will typically feature an
ntermediate level of discriminatory power. Unlike those works,
hich consider the optimal design problem, Feng and Lu (2018)
tudy how the optimal prize allocation in a sequential three-
attle contest varies with the discriminatory power of the contest
echnology. More recently, Fu and Wu (2022) and Lu et al. (2017,
022) consider optimal design problem for a wide range of ac-
uracy level of the contest. Unlike most of the optimal design
roblems that assume contest designers can choose a mechanism
o maximize effort, our paper treats the dissipation factor as
n exogenous value, which cannot be altered by any individ-
al conflict party. Additionally, we investigate the effect of the
issipation factor on agents’ behaviors.
The remainder of the paper is organized as follows. In Sec-

ion 2, we formally introduce the regular conflict network model
nd provide the equilibrium analysis. In Section 3, we study the
ffects of the returns to scale technology on equilibrium efforts
f agents. Section 4 concludes. All technical proofs are relegated
n Appendix.

. Model and equilibrium

Consider a regular conflict network among n + 1 agents, in
hich each agent is in a bilateral conflict with all other agents.
he set of agents is denoted by N = {1, 2, . . . , n+ 1}. We model

each bilateral conflict among agents as a contest. The outcome
of each contest depends on the simultaneous strategic behaviors
(i.e., contest efforts) of the involved agents. For each agent i,
denote her effort in the contest against her rival j by xij ∈ R+ (we
use R+ to denote the set of all nonnegative real numbers), her
effort vector against all of her rivals by an n-dimensional vector
xi = (xij)j̸=i, and her total effort by Xi =

∑
j̸=i xij.

In each contest, the winning agent obtains an exogenous prize
V > 0 and the agent who loses receives nothing. The outcome of
each contest is specified by the Tullock contest success function:
In the contest between agent i and her rival j, when they exert
efforts xij and xji respectively, the winning probability of agent i
is

p(xij, xji) =

⎧⎨⎩
xrij

xrij+xrji
, if xij + xji > 0,

1
2 , if xij = xji = 0,

3 In the contest literature, the terminologies ‘‘the return to scale technology’’
nd ‘‘dissipation factor’’ are used in different situations. They both refer to the
iscriminatory power in the Tullock contest.
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here r is a positive constant and represents the returns to scale
echnology in effort spending. Throughout the paper, we assume
hat r ≤ 1, which ensures the existence and uniqueness of a
ure-strategy Nash equilibrium.4
We model the asymmetry among agents by assuming that

hey have different costs. Specifically, the cost function of agent
is C1(X1) =

β

2 X
2
1 , and that of other agents j ̸= 1 is Cj(Xj) =

1
2X

2
j ,

here β is a positive constant. Notice that agent 1 is a strong
gent when 0 < β < 1 and a weak one when β > 1. For
onvenience, agent 1 is usually referred to as the singular agent,
nd other agents are referred to as common agents.
When the agents’ strategy profile is x = (xi)i∈N , the expected

ayoff function of each agent i is

ui(x) = V ·

∑
j̸=i

p(xij, xji) − Ci(Xi) = V ·

∑
j̸=i

p(xij, xji) − Ci
(∑

j̸=i xij
)
.

By Theorem 2 and Lemma 2 in Xu et al. (2022), this con-
flict network game admits a unique pure-strategy Nash equilib-
rium, which is interior and symmetric. The following proposition
formally characterizes this equilibrium.

Proposition 1 (Equilibrium). There exists a unique pure-strategy
Nash equilibrium, in which the equilibrium effort of the singular
agent against each rival is a, the equilibrium effort of each common
agent against the singular agent is b, and the equilibrium effort of
each common agent against another common agent is c:

a =

[
(n − 1)rVθ2

4nβ(nβ − θ2)

] 1
2

, b =

[
(n − 1)rVθ4

4nβ(nβ − θ2)

] 1
2

, and

c =

[
rV (nβ − θ2)
4n(n − 1)β

] 1
2

;

Here θ :=
b
a ∈

(
0,

√
nβ

)
is uniquely determined by the following

quation

(nβ − θ2)θ r−2
− (n − 1)(1 + θ r )2 = 0. (1)

Fig. 1 explicitly depicts a regular conflict network with four
players and the equilibrium efforts in each bilateral conflict.

The parameter θ =
b
a in Proposition 1 captures the ratio of

quilibrium efforts in any bilateral conflict between a common
gent and the singular agent. For each β > 0 and r ∈ (0, 1],
e can determine the unique solution θ of Eq. (1). Such a solu-
ion θ depends on β and r , which will be rewritten as θ (β, r)
o explicitly reflect those dependence. We define an auxiliary
unction

(t) =
(n − 1)t3 + 2(n + 1)t2 + (n − 1)t

4n
.

n the following, we consider the relationship between the equi-
ibrium ratio θ and the cost parameter β .

emma 1 (Effect of β on θ ). The relationship between θ = θ (β, r)
nd β is summarized as follows:

(1) For any r ∈ (0, 1], the equilibrium effort ratio θ is increasing
in β . Moreover, we have 0 < θ < 1 when 0 < β < 1, θ = 1
when β = 1, and θ > 1 when β > 1.

4 In a Tullock contest, the parameter r measures the discriminatory power
r the noisiness of the contest. A higher r means that the contest is more
iscriminatory or less noisy, and hence an increase in effort will result in a
igher rate of return for a particular agent. In particular, if r < 1 (resp. r = 1

or r > 1), the returns to scale are decreasing (resp. constant or increasing). In
other words, when r < 1, although the marginal benefit is always positive, it is
decreasing as the effort level increases.
3

Fig. 1. A regular conflict network and its equilibrium efforts.

(2) When β ̸= 1, the equilibrium effort ratio θ lies in the interval
(θ, β

1
2 ), where θ is the unique positive solution to δ(θ ) = β .5

In each conflict between the singular agent and a common
agent, Lemma 1 shows that as the singular agent becomes weaker
(or β increases), this equilibrium effort ratio θ will increase. This
is in line with the conventional wisdom that agents will exert less
(resp. more) effort when they believe they have a smaller (resp.
larger) chance of winning.

3. Comparative statics

In this section, we study the effect of r on the equilibrium ef-
forts, including (1) the effort of each agent against each opponent,
(2) the individual total effort of each agent, and (3) the conflict
intensity (i.e., the total effort of all agents).

Before the analysis, we first prove the following auxiliary
result.

Lemma 2 (Effect of r on θ ). For any β ̸= 1, the equilibrium effort
ratio θ =

b
a is decreasing in r. Moreover, limr↓0 θ (β, r) = β

1
2

nd limr↑1 θ (β, r) = θ , where θ is the unique positive solution to
δ(θ ) = β .

Lemma 2 suggests that the equilibrium effort ratio of the
common agents to the singular agent decreases with the level
of returns to scale. As the level of returns to scale r increases,
the marginal benefit of exerting effort in each bilateral conflict
becomes higher, which tends to incentivize each agent to exert
more effort. However, the asymmetry among agents makes their
incentives to supply effort diverge. By raising the effort level b,
common agent can only get some benefit in a single bilateral
onflict with the singular agent. By contrast, the singular agent
an benefit more by raising the effort level a, as she is involved in
bilateral conflicts with all common agents. Hence, the singular
gent has a stronger incentive to raise his effort supply than any
ommon agent does, which explains why the effort ratio θ is
ecreasing in r .6 Additionally, this result does not reveal how
onflict technology impacts the equilibrium behaviors of each
gent. We will address this in the next subsection.

5 When 0 < β < 1, the equilibrium effort ratio θ is in the interval (β, β
1
2 );

when β > 1, the equilibrium effort ratio θ is in (β
1
3 , β

1
2 ).

6 This can also be explained by the substitution effect describing below.
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.1. Effect of r on a, b and c

We first consider the effect of r on a. The result is summarized
in the following proposition.

Proposition 2 (Effect of r on a). There exist β
a
< 1 and β̄a > 1

such that

• when β
a

≤ β ≤ β̄a, the equilibrium effort a is strictly
increasing in r.

• when β < β
a
or when β > β̄a, there exists an inverted U rela-

tionship between the equilibrium effort a and r. In particular,
there exists ra ∈ (0, 1) such that a is strictly increasing in r
when r ∈ (0, ra) and strictly decreasing in r when r ∈ (ra, 1].

To see how the relationship between the equilibrium effort
a and the returns to scale technology r is affected by the cost
asymmetry β , we consider an example in Fig. 2. Given V = 10
nd n = 2, Fig. 2 depicts the equilibrium efforts of the singular
gent with β being 0.001, 0.01, 0.1, 20, 60, and 100. Indeed, we

have β
a
= 0.08 and β̄a = 49.63. So, when β is 0.1 or 20 (between

.08 and 49.63), the equilibrium effort a is strictly increasing in
r . And when β is any other value (outside (0.08, 49.63)), there
xists an inverted U relationship between the equilibrium effort
and r .
We then consider the effect of r on b. The result is summarized

in the following proposition.

Proposition 3 (Effect of r on b). There exist β
b
< 1 and β̄b > 1

such that

• when β
b

≤ β ≤ β̄b, the equilibrium effort b is increasing in r.
• when β < β

b
or when β > β̄b, there exists an inverted U rela-

tionship between the equilibrium effort b and r. In particular,
there exists rb ∈ (0, 1) such that b is strictly increasing in r
when r ∈ (0, rb) and strictly decreasing in r when r ∈ (rb, 1].

Given V = 10 and n = 2, Fig. 3 depicts the equilibrium
fforts of the singular agent with β being 0.01, 0.1, 0.5, 5, 20,
nd 60. Indeed, we have β

b
= 0.13 and β̄b = 16.33. So, when

is 0.5 or 5 (between 0.13 and 16.33), the equilibrium effort b is
strictly increasing in r . And when β is any other value (outside
(0.13, 16.33)), there exists an inverted U relationship between
the equilibrium effort b and r .

The following result studies the relationships between the
ffect of r on a and the effect of r on b.
 w

4

Lemma 3. We have the following relationships.

• When a is decreasing in r, b must also be decreasing in r.
• When β < β

a
= min{β

a
, β

b
} or β > β̄a = max{β̄a, β̄b}, we

have ra > rb.

The first result clearly indicates that b is more likely to form
an inverted U relationship between r than a, which implies the
second result. When both a and b have inverted U relationships
with r , it should be the case that ra > rb. Otherwise, in some
interval r , a is increasing but b is decreasing.7

Propositions 2 and 3 demonstrate that the effects of the re-
urns to scale technology on efforts in a single bilateral conflict
etween the singular agent and a common agent (a and b) cru-
ially depend on the cost asymmetry among agents. When agents
re not sufficiently asymmetric, those efforts are always increas-
ng in r . However, when agents are sufficiently asymmetric, there
xists an inverted U relationship between those efforts and the
evel of returns to scale.

Intuitively, there are three effects: a competition effect, a
iscouragement effect and a substitution effect. First, as the level
f returns to scale increases, the competition between agents
n each bilateral conflict becomes fiercer, implying that each
gent has a greater incentive to exert effort (competition effect).
econd, in a bilateral conflict between a singular agent and a
ommon agent, the weaker agent is less likely to win as r in-
reases, and hence she is discouraged from investing further and
ants to lower her own effort level (discouragement effect). The
iscouragement effect can be captured by θ =

b
a . When β < 1,

as r increases, θ < 1 moves further away from 1, and hence
the discouragement effect becomes stronger. When β > 1, as r
ncreases, θ > 1 moves close to 1, and hence the discouragement
ffect becomes weaker. Third, since each common agent has to
ompete with a singular agent and n−1 identical rivals, common
gents have incentives to increase c and relatively decrease b
f the cost asymmetry exists (substitution effect). Such an effect
ecomes stronger as r increases.8
Notice that all the three effects can influence b, while only

he first two effects have impacts on a. Since the competition
ffect impacts individual efforts a and b in the opposite direction

7 This can be explained by the substitution effect describing below.
8 The substitution effect can be captured by the effort ratio ρ =

b
c =

(n−1)θ2

nβ−θ2
,

hich is decreasing in r .
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s compared to other two effects, the net effect of the increase
n returns to scale technology on these individual efforts would
hen depend on whether the competition effect dominates. When
he cost asymmetry is sufficiently low, the competition effect al-
ays dominates the discouragement effect for the singular agent,
nd it also dominates both the discouragement effect and the
ubstitution effect for each common agent. Hence, the individual
fforts a and b always increase as the level of returns to scale

increases. When the cost asymmetry is moderate, the competition
effect continues to dominate for the singular agent, which implies
an increasing relationship between a and r . However, it can
nly dominate the discouragement effect and the substitution
ffect for each common agent when r is sufficiently small, which
mplies that there exists an inverted U relationship between b and
. When the cost asymmetry is sufficiently high, the competition
ffect only dominates when r is sufficiently small for both types
f agents, which results in an inverted U relationship between a,
and r .
From the numerical examples in Figs. 2 and 3, we can see how

ritical values ra and rb change as β changes. Our observation
suggests: (1) When β < β

a
(resp. β

b
), ra (resp. rb) increases as

β increases; (2) When β > β̄a (resp. β̄b), ra (resp. rb) decreases
s β increases. It means that the critical levels of return to
cale (ra and rb) increase in the cost asymmetry β when the
ingular agent is sufficiently stronger than the common agents,
hile decrease in the cost asymmetry when the singular agent is
ufficiently weaker than the common agents. Intuitively, as the
iscouragement effect and substitution effect increase in the cost
symmetry β , it is more likely to dominate the competition effect

as the differences between the singular agent and the common
agents become more pronounced. Consequently, the greater the
ability difference, the sooner the critical value appears.

We last consider the effect of r on c.

Proposition 4 (Effect of r on c). The equilibrium effort c is strictly
increasing in r regardless of β .

This proposition simply means that as the level of returns to
cale r increases, the conflict becomes more intensive so that it
ends to elicit higher individual effort among the common agents.
t is the outcome of the combination of the competition effect and

positive) substitution effect. a

5

Fig. 4. The relationship between individual total effort b + (n − 1)c and r .

.2. Individual total efforts and conflict intensity

It is clear that the singular agent’s total effort na has the same
hape with a as r increases. We further explore how does the
eturns to scale technology affect the individual total efforts of
ach common agent.

roposition 5 (Effect of r on Total Effort of Common Agents). The
ndividual total effort b + (n − 1)c of any common agent is strictly
ncreasing in r, regardless of β .

Given V = 10 and n = 2, Fig. 4 depicts the individual total
fforts of each common agent with β being 0.1, 0.01, 20, and 60.
Since each common agent has to compete with a singular

gent and n − 1 identical companions, the total effort of each
ommon agent is b + (n − 1)c. Note that c is strictly increasing
n r while b may have an inverted U relationship with r , the total
ffect is not straightforward. Due to the intensive competitions
mong the common agents, the competition effect strictly dom-
nates the substitution effect and the potential discouragement
ffect. Thus, the individual total effort of each common agent
lways increases with the level of returns to scale.
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3.3. Conflict intensity

Lastly, we consider the conflict intensity, i.e., na + n
(
b + (n −

1)c
)

= na + nb + n(n − 1)c. When β = 1, we have θ = 1. So the

conflict intensity is (1 + n)
[ nrV

4

] 1
2 , which is strictly increasing in

. In the following, we consider the situation when β ̸= 1.

roposition 6 (Effect of r on the Conflict Intensity). When β > 1,
the conflict intensity na + nb + n(n − 1)c is strictly increasing in r.
When β < 1, the conflict intensity may be non-monotonic in r.

Given V = 10 and n = 2, Fig. 5 depicts the conflict intensity
with β being 20 and 60.

The conflict intensity increases with the level of returns to
scale, when the singular agent is weak (β > 1). The intuition is
similar with Proposition 5, in which the competition effect strictly
dominates other effects.

When the singular agent is strong compared to the common
agents (β < 1), the relationship between the conflict intensity
and the returns to scale technology is subtle, and the specific
trend of change may depend on the number of common agents.

Given V = 10 and n = 100, Fig. 6(a) depicts the conflict
intensity with β being 0.01, 0.0001, and 0.000001. (1) When
β = 0.01, the conflict intensity increases with the level of returns
to scale. (2) When β = 0.000001, there exists an inverted U
relationship between conflict intensity and the returns to scale
technology. (3) When β = 0.0001, as the level of returns to scale
increases, the conflict intensity initially increases, then decreases,
and finally increases, or we have a wave relationship between the
conflict intensity and the returns to scale technology.9

Since the total effort of the stronger agent(s) always accounts
for a large percentage of the conflict intensity, the conflict inten-
sity tends to have a similar shape with the individual total effort
of the stronger agent(s).

The conflict intensity can be used to understand the behaviors
of agents in regular networks. Our finding suggests that the
conflict intensity may not be increasing with the returns to scale
technology in regular networks when agents differ sufficiently in

9 See Appendix A.7 for more discussion.
6

cost asymmetry. In a regular network with cost asymmetry be-
tween one individual and others, if the singular agent is stronger,
the intensified competition will induce lower conflict intensity.
This finding offers a possible explanation for some phenom-
ena observed in real-world conflict networks. In various sports
games (e.g., National Basketball Association, Premier League, FIVB
Volleyball World Cup, Swiss-system chess tournament, etc.), an
extremely strong team or individual will lead to a competitive
environment with high pressure for other teams or individuals,
resulting in weak competitions. A similar situation can occur in
the competition among manufacturers, regions and countries.

4. Conclusion and remarks

This paper investigates the factors that affect agents’ behav-
iors in conflict networks with the returns to scale technology.
Focusing on a regular conflict network model, we find that the
returns to scale technology plays an important role in affect-
ing equilibrium efforts. Differing from Jiao et al. (2019) who
show that network structure asymmetry plays a major role, in a
regular network structure, we identify the cost asymmetry as an-
other important factor that determines the relationship between
equilibrium efforts of agents and the returns to scale technology.

We show that the individual total effort of each common agent
always increases, while the total effort of the singular agent has
an inverted U relationship with the level of returns to scale,
provided that the singular agent is sufficiently different from
common agents in cost functions. Such a result offers a possible
explanation for why equilibrium efforts can be reduced as the
conflict technology varies. We also show that when the singular
agent is not sufficiently different from others in cost functions,
the higher level of returns to scale will increase equilibrium
efforts. Furthermore, we find that the conflict intensity has a
similar shape to the individual total effort of the stronger agent(s).

Our paper mainly focuses on the regular conflict network with
a singular agent, while it would be interesting to study whether
the inverted U relationship between equilibrium efforts and the
returns to scale technology exists under other network structures.
In the following, we provide two example of conflicts with a ring
structure and a line structure.

Fig. 7 explicitly depicts the ring structure, where individual 1
is the singular agent.

Given V = 10, Fig. 8 depicts individual total efforts and the
conflict intensity with β being 0.01 and 60. When the singular
gent is strong (e.g., β = 0.01), there exists an inverted U

relationship between her total effort X1 and returns to scale
technology r . Meanwhile, the conflict intensity X also has an
inverted U relationship with r . On the other hand, when the
singular agent is weak (e.g., β = 60), there still exists an inverted
U relationship between her total effort X1 and the returns to scale
technology, but the conflict intensity X increases with r .

Fig. 9 explicitly depicts a line structure, where agents 2 and
3 have the cost function β

2 X
2
i , and agents 1 and 4 have the cost

function 1
2X

2
j .

Given V = 10, Fig. 10 depicts individual total efforts and the
onflict intensity with β being 0.005 and 10. Given the competi-
ion between agents 2 and 3, individual total efforts of them (X2 =

3) are always increasing with the returns to scale technology.
hen the cost asymmetry is sufficiently large, there exists an

nverted U relationship between the total efforts of agents 1 and
(X1 = X4) and r .
This example indicates that the inverted U relationship may

lso occur when the structure asymmetry and the cost asymme-
ry coexist.

This paper focuses on the decreasing returns to scale tech-
ology (r ≤ 1), which ensures the existence and uniqueness
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f a pure-strategy equilibrium in the regular network model. It
s natural to wonder whether and how our main results extend
o less noisy contests (namely r > 1). We leave it as an open
uestion for future research.
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ppendix

.1. Proof of Proposition 1

roof of Proposition 1. Based on Xu et al. (2022, Theorem 2
nd Lemma 2), there is a unique pure-strategy equilibrium in the
ame, which is interior. Since each agent i’s payoff function ui is
oncave in xi, the unique pure-strategy equilibrium x∗

= (x∗

i )i∈N
s characterized by the following first-order conditions:

r(x∗

ij)
r−1(x∗

ji)
r

∗ r ∗ r 2 − C ′

i (X
∗

i ) = 0,

[(xij) + (xji) ]

7

for all i ∈ N and all j ̸= i. Specifically, we have

V
r(x∗

1j)
r−1(x∗

j1)
r

[(x∗

1j)r + (xj1)r ]2
− βX∗

1 = 0, j ̸= 1,

V
r(x∗

j1)
r−1(x∗

1j)
r

[(x∗

j1)r + (x∗

1j)r ]2
− X∗

j = 0, j ̸= 1,

V
r(x∗

ij)
r−1(x∗

ji)
r

[(x∗

ij)r + (x∗

ji)r ]2
− X∗

i = 0, i, j ̸= 1, i ̸= j.

In the following, we shall determine a symmetric solution for
these equations, which is in turn the unique equilibrium. We let
x∗

1j = a and x∗

j1 = b for j ̸= 1, and x∗

ij = c for i, j ̸= 1 and i ̸= j. Note
that a, b, and c are all positive. Then X∗

1 = na and X∗

j = b+(n−1)c
for j ̸= 1. Hence, the first-order conditions becomes

V
rar−1br

(ar + br )2
− β(na) = 0, (2)

V
rbr−1ar

(ar + br )2
−

(
b + (n − 1)c

)
= 0, (3)

V
r
4c

−
(
b + (n − 1)c

)
= 0. (4)

From the Eqs. (2) and (3), we know that b
a =

nβa
b+(n−1)c . Let

=
b
a > 0. Then we have nβa

b+(n−1)c = θ , which implies that

c =
nβ−θ2

(n−1)θ a. From Eqs. (3) and (4), we get that θ r−1

(1+θ r )2a
=

1
4c .

Since we already have c =
nβ−θ2

(n−1)θ a, θ must solve the following
equations:

nβ − θ2

(n − 1)θ
=

(1 + θ r )2

4θ r−1 ,

or

4(nβ − θ2)
θ2

=
(n − 1)(1 + θ r )2

θ r
, (5)

or

4(nβ − θ2)θ r−2
− (n − 1)(1 + θ r )2 = 0.

For each β > 0 and each r ∈ (0, 1], we will show that the
solution of Eq. (5) is unique. Let Φ(t, β, r) = 4(nβ − t2)t r−2

−

n − 1)(1 + t r )2. For any fixed β and r , we have

t =
∂Φ

= −2t r−1
(
4 + 2(2 − r)

nβ − t2
+ (n − 1)r(1 + t r )

)
.

∂t t2
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learly, Φt < 0 when 0 < t <
√
nβ . That is, Φ is strictly

ecreasing in t on (0,
√
nβ). Since limt↓0Φ(t, β, r) = +∞ and

(
√
nβ, β, r) < 0, the equation Φ(t, β, r) = 0 has a unique solu-

tion in (0,
√
nβ), which is denoted by θ . Obviously, Φ(t, β, r) < 0

for any t ≥
√
nβ . It implies that t = θ is the unique solution of

(t, β, r) = 0 on (0,+∞).
Since θ is uniquely determined, the equilibrium effort levels

an also be solved, i.e.,

=

[
(n − 1)rVθ2

4nβ(nβ − θ2)

] 1
2

, b = θa =

[
(n − 1)rVθ4

4nβ(nβ − θ2)

] 1
2

, and

=
nβ − θ2

(n − 1)θ
a =

[
rV (nβ − θ2)
4n(n − 1)β

] 1
2

. □ (6)

t

8

A.2. Proofs of Lemmas 1 and 2

roof of Lemma 1. Since θ is uniquely determined by Eq. (1),
e have that θ = 1 if and only if β = 1, regardless of r . On one

hand, if the solution θ is 1, then obviously β should be 1. On the
other hand, if β = 1, it is easy to see that θ = 1 is a solution.
ince Eq. (1) always has the unique solution, the unique solution
hould be 1. It is clear that θ =

b
a captures the ratio of equilibrium

efforts in a bilateral conflict between agents j ̸= 1 and 1. If β = 1,
then all agents are identical, and hence the equilibrium efforts are
the same, or θ = 1.

For each β and each r , we have determined the unique solu-
ion t = θ = θ (β, r) of the equation Φ(t, β, r) = 4(nβ−t2)t r−2

−
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n − 1)(1 + t r )2 = 0. Then we have

∂Φ

∂t

⏐⏐⏐⏐
t=θ

= −2θ r−1
(
4 + 2(2 − r)

nβ − θ2

θ2
+ (n − 1)r(1 + θ r )

)
= −2θ r−1

(
4 + 2(2 − r)

(n − 1)(1 + θ r )2

4θ r

+ (n − 1)r(1 + θ r )
)

by Eq. (5)

= −2θ r−1 (n − 1)(2 + r)θ2r + 4(n + 1)θ r + (n − 1)(2 − r)
2θ r

= −
1
θ

(
(n − 1)(2 + r)θ2r + 4(n + 1)θ r

+ (n − 1)(2 − r)
)
< 0,

nd
∂Φ

∂β

⏐⏐⏐⏐
t=θ

= 4nθ r−2 > 0.

hus,

dθ
dβ

= −
∂Φ

∂β

⏐⏐⏐⏐
t=θ

/
∂Φ

∂t

⏐⏐⏐⏐
t=θ

> 0.

Since θ = 1 if and only if β = 1, we have that θ > 1 when β > 1,
and θ < 1 when 0 < β < 1.

We can further narrow down the possible range of θ = θ (β, r)
hen β ̸= 1. We know that the RHS of Eq. (5) is bounded below
y 4(n − 1) and bounded above by (n−1)(1+θ )2

θ
for 0 < r ≤ 1.10

Then

4(n − 1) <
4(nβ − θ2)

θ2
≤

(n − 1)(1 + θ )2

θ
.

he first inequality implies that θ < β
1
2 , and the second inequal-

ty leads to that θ ≤ θ , where θ is the unique positive solution to
n − 1)θ3 + 2(n + 1)θ2 + (n − 1)θ − 4nβ = 0.11

When 0 < β < 1, we have θ < 1. Hence, θ < 1 and 4nβ =

n−1)θ3+2(n+1)θ2+(n−1)θ < (n−1)θ+2(n+1)θ+(n−1)θ =

nθ . Thus, β < θ . When β > 1, we have θ > 1. Hence, θ > 1 and
4nβ = (n − 1)θ3 + 2(n + 1)θ2 + (n − 1)θ < 4nθ3. Thus, β

1
3 < θ .

In summary, we have

∈

{
(β, β

1
2 ), if 0 < β < 1,

(β
1
3 , β

1
2 ), if β > 1. □

Proof of Lemma 2. Recall that t = θ = θ (β, r) is the unique
solution for the equation Φ(t, β, r) = 4(nβ− t2)t r−2

− (n−1)(1+

t r )2 = 0.
In the proof of Lemma 1, we already have

∂Φ

∂t

⏐⏐⏐⏐
t=θ

= −
1
θ

(
(n−1)(2+r)θ2r +4(n+1)θ r +(n−1)(2−r)

)
< 0.

Moreover, we have

∂Φ

∂r

⏐⏐⏐⏐
t=θ

=

(4(nβ − θ2)
θ2

− 2(n − 1)(1 + θ r )
)
θ r ln(θ )

= (n − 1)(1 + θ r )(1 − θ r ) ln(θ ),

where the second equality is due to Eq. (5). Lemma 1 shows that
θ = 1 when β = 1, θ > 1 when β > 1, and θ < 1 when
0 < β < 1. Thus, ∂Φ

∂r

⏐⏐
t=θ < 0 whenever β ̸= 1.

10 Note that we always have (1+θ )2
θ

≥
(1+θ r )2
θ r regardless of θ .

11 When θ = 0, the LHS is negative, and when θ is sufficiently large, the LHS
s positive. It is clear that the LHS is strictly increasing in θ . Thus, this equation
has a unique positive solution.
 t

9

Therefore, whenever β ̸= 1,

dθ
dr

= −
∂Φ

∂r

⏐⏐⏐⏐
t=θ

/
∂Φ

∂t

⏐⏐⏐⏐
t=θ

=
θ (n − 1)(1 + θ r )(1 − θ r ) ln(θ )

(n − 1)(2 + r)θ2r + 4(n + 1)θ r + (n − 1)(2 − r)
< 0. (7)

For any β ̸= 1, since θ is decreasing in r , we have limr↓0 θ =

β
1
2 and limr↑1 θ = θ . □

A.3. Proof of Proposition 2

To consider the effect of r on a, we define the following
auxiliary function:

ψ(t, r) = 1 +
2[(n − 1)t2 + 2(n + 1)t + (n − 1)](1 − t) ln(t)

(1 + t)[(n − 1)(2 + r)t2 + 4(n + 1)t + (n − 1)(2 − r)]
.

The following lemma establishes some properties of the func-
tion ψ(t, r), which are useful for identifying the effect of r on
a.

Lemma 4. For each r ∈ (0, 1], the equation ψ(t, r) = 0 has
a unique solution ta(r) in (0, 1) and a unique solution t̄a(r) in
(1,+∞). Furthermore, ψ(t, r) > 0 when ta(r) < t < t̄a(r), and
ψ(t, r) < 0 when t < ta(r) or t > t̄a(r).

Proof of Lemma 4. Let ψr =
∂ψ

∂r and ψt =
∂ψ

∂t .
We know that ψt is given in Box I

Rewrite the above expression as follows

ψt = α1(1 − t) − α2 ln(t),

where

α1 =
2[(n − 1) + 2(n + 1)t + (n − 1)t2]

t(1 + t)[(n − 1)(2 − r) + 4(n + 1)t + (n − 1)(2 + r)t2]
,

2 =
8[(n − 1)r(1 − t)3(1 + t) + ((n − 1) + 2(n + 1)t + (n − 1)t2)2]

(1 + t)2[(n − 1)(2 − r) + 4(n + 1)t + (n − 1)(2 + r)t2]2
.

It is easy to see that α1 > 0. We can also show that α2 > 0, which
follows from

α2 >
8[(n − 1)r(1 − t)3(1 + t) + (n − 1)2(1 + t)4]

(1 + t)2[(n − 1)(2 − r) + 4(n + 1)t + (n − 1)(2 + r)t2]2

=
8(n − 1)[r(1 − t)3 + (n − 1)(1 + t)3]

(1 + t)[(n − 1)(2 − r) + 4(n + 1)t + (n − 1)(2 + r)t2]2

>
8(n − 1)r[(1 − t)3 + (1 + t)3]

(1 + t)[(n − 1)(2 − r) + 4(n + 1)t + (n − 1)(2 + r)t2]2

=
16(n − 1)r(1 + 3t2)

(1 + t)[(n − 1)(2 − r) + 4(n + 1)t + (n − 1)(2 + r)t2]2

> 0.

herefore, ψt > 0 if 0 < t < 1, and ψt < 0 if t > 1.
We also have that

r =
2(n − 1)(1 − t)2[(n − 1)t2 + 2(n + 1)t + (n − 1)] ln(t)

[(n − 1)(2 − r) + 4(n + 1)t + (n − 1)(2 + r)t2]2
.

t is clear that ψr > 0 if t > 1, and ψr < 0 if 0 < t < 1.
Fix r ∈ (0, 1]. Since ψ is strictly increasing in t on (0, 1) and

imt↓0 ψ(t, r) < 0 < limt↑1 ψ(t, r), the equation ψ(t, r) = 0 has
unique solution in (0, 1), denoted by ta(r). Moreover, we have
< 0 if t < ta(r) and ψ > 0 if ta(r) < t < 1.
On the other hand, since ψ is strictly decreasing in t on

1,+∞) and limt↓1 ψ(t, r) > 0 > limt↑∞ ψ(t, r), the equation
(t, r) = 0 also has a unique solution in (1,+∞), denoted by

¯a(r). Moreover, we have ψ > 0 if 1 < t < t̄a(r) and ψ < 0 if
> t̄ (r).
a
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ψt =
2(1 − t2)[(n − 1) + 2(n + 1)t + (n − 1)t2][(n − 1)(2 − r) + 4(n + 1)t + (n − 1)(2 + r)t2]

t(1 + t)2[(n − 1)(2 − r) + 4(n + 1)t + (n − 1)(2 + r)t2]2

−
8[(n − 1)r(1 − t)3(1 + t) + ((n − 1) + 2(n + 1)t + (n − 1)t2)2] ln(t)

(1 + t)2[(n − 1)(2 − r) + 4(n + 1)t + (n − 1)(2 + r)t2]2
.

Box I.
0

S

S

w

2

T

2

b

In sum, for any r ∈ (0, 1], we have ta(r) < 1 < t̄a(r) and

ψ

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

< 0, if t < ta(r),
= 0, if t = ta(r),
> 0, if ta(r) < t < t̄a(r),
= 0, if t = t̄a(r),
< 0, if t̄a(r) < t. □

Proof of Proposition 2. If β = 1, we know that θ = 1. In
this case, a = b =

[ rV
4n

] 1
2 , both of which are strictly increasing

n r . In the following, we focus on the case where β ̸= 1. Let

a
= δ

(
ta(1)

)
< 1 and β̄a = δ

(
t̄a(1)

)
> 1.

Step 1

Recall a =

[
(n−1)rVθ2

4nβ(nβ−θ2)

] 1
2
. To see the effect of r on a, we just

eed to look at the effect of r on g(r, θ ) =
rθ2

nβ−θ2
.

We have that
dg
dr

=
∂g
∂r

+
∂g
∂θ

dθ
dr

=
θ2

nβ − θ2
+

2nβθr
(nβ − θ2)2

dθ
dr

=
θ2

nβ − θ2
+

2nβθr
(nβ − θ2)2

×
θ (n − 1)(1 + θ r )(1 − θ r ) ln(θ )

(n − 1)(2 + r)θ2r + 4(n + 1)θ r + (n − 1)(2 − r)

=
θ2

nβ − θ2

[
1 +

2nβr
nβ − θ2

×
(n − 1)(1 + θ r )(1 − θ r ) ln(θ )

(n − 1)(2 + r)θ2r + 4(n + 1)θ r + (n − 1)(2 − r)

]
=

θ2

nβ − θ2

[
1

+
2[(n − 1) + 2(n + 1)θ r + (n − 1)θ2r ](1 − θ r ) ln(θ r )

(1 + θ r )[(n − 1)(2 + r)θ2r + 4(n + 1)θ r + (n − 1)(2 − r)]

]
=

θ2

nβ − θ2
ψ(θ r , r),

here the third equality follows from Eq. (7) and the last equal-
ty is due to the following equation nβ

nβ−θ2
=

θ2

nβ−θ2
+ 1 =

4θ r

(n−1)(1+θ r )2
+1 =

(n−1)+2(n+1)θ r+(n−1)θ2r

(n−1)(1+θ r )2
, which again follows from

Eq. (5).
Since Lemma 1 shows θ <

√
β , we know that dg

dr > 0 if and
nly if ψ(θ r , r) > 0. By Lemma 4, we know that dg

dr > 0 if and
nly if ta(r) < θ r < t̄a(r).

tep 2
For each r ∈ (0, 1], we already have ψ

(
ta(r), r

)
= 0,

ψ
(
t̄a(r), r

)
= 0, and ta(r) < 1 < t̄a(r). Hence, Implicit Function

Theorem and the proof of Lemma 4 imply that

dta(r)
= −

ψr |t=ta(r) > 0 and
dt̄a(r)

= −
ψr |t=t̄a(r) > 0.
dr ψt |t=ta(r) dr ψt |t=t̄a(r)

10
Therefore, both ta(r) and t̄a(r) are strictly increasing in r . Define

ta0 = lim
r↓0

ta(r), ta1 = lim
r↑1

ta(r), t̄a0 = lim
r↓0

t̄a(r), t̄a1 = lim
r↑1

t̄a(r).

Note that limr↓0 ψ(t, r) = 1 +
(1−t) ln(t)

1+t , which does not depend
on n. Thus, ta0 and t̄a0 should not depend on n either. However,
ta1 and t̄a1 both depend on n. Moreover, by solving the equation

= limr↓0 ψ(t, r) = 1 +
(1−t) ln(t)

1+t , we have

ta0 = lim
r↓0

ta(r) ≈ 0.214 and t̄a0 = lim
r↓0

t̄a(r) ≈ 4.68.

Furthermore, we can narrow down the range of threshold t̄a1.
ince ψ(6.5, 1) ≈

−5.05n−140.29
7.5(153.75n−101.75) < 0, we have t̄a1 < 6.5.

To see the effect of r on θ r , we have

d (θ r )
dr

=
∂(θ r )
∂r

+
∂(θ r )
∂θ

dθ
dr

= θ r ln(θ ) + rθ r−1 dθ
dr

= θ r ln(θ ) + rθ r−1

×
(n − 1)θ (1 + θ r )(1 − θ r ) ln(θ )

(n − 1)(2 + r)θ2r + 4(n + 1)θ r + (n − 1)(2 − r)

= θ r ln(θ )
2(n − 1)θ2r + 4(n + 1)θ r + 2(n − 1)

(n − 1)(2 + r)θ2r + 4(n + 1)θ r + (n − 1)(2 − r)
.

tep 3
Consider the case when 0 < β < 1. Then we have 0 < θ < 1,

hich implies that d (θ r )
dr < 0. Therefore, as r increases from 0

to 1, θ r decreases from 1 to θ .12 Note that β
a

= δ
(
ta(1)

)
=

(n−1)t3a1+2(n+1)t2a1+(n−1)ta1
4n < 1.

Case (i): Consider the case when (1 >)θ ≥ ta1. Since (n − 1)θ3 +

(n + 1)θ2 + (n − 1)θ = 4nβ , θ ≥ ta1 is equivalent to β ≥ β
a
.

For any r ∈ (0, 1), we always have that

1 > θ r > θ ≥ ta1 > ta(r).

hat is, for any r ∈ (0, 1), we have that θ r ∈
(
ta(r), 1

)
⊆(

ta(r), t̄a(r)
)
, which implies that dg

dr > 0.

Case (ii): Consider the case when θ < ta1(< 1). Since (n− 1)θ3 +

(n + 1)θ2 + (n − 1)θ = 4nβ , θ < ta1 is equivalent to β < β
a
.

We know that

lim
r↓0
θ r = 1 > ta0 and lim

r↑1
θ r = θ < ta1.

Since θ r is decreasing in r (from 1 to θ ) and ta(r) is increasing in
r (from ta0 to ta1), there must exist a unique r in (0, 1), denoted
y ra, such that θ ra = ta(ra), θ

r > ta(r) if r < ra, and θ r < ta(r) if
ra < r ≤ 1. As a result, θ r is between ta(r) and t̄a(r) when r < ra

12 Note that θ = θ is the solution of Eq. (5) when r = 1.
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nd θ r is outside of
(
ta(r), t̄a(r)

)
when r ≥ ra. Thus, there exists

an inverted U relationship between g and r .

Summary: When β
a

≤ β < 1, g is increasing in r , and when
< β

a
(< 1), there exists an inverted U relationship between g

and r .

Step 4
Consider the case when β > 1. Then we have θ > 1, which

implies that d (θ r )
dr > 0. Therefore, as r increases from 0 to 1,

θ r increases from 1 to θ . We aim to show that there exists an
inverted U relationship between g and r if and only if β is above
a certain threshold. We consider the following three cases.

Case (i): If θ ≤ t̄a0, then for any r ∈ (0, 1),

1 < θ r < θ ≤ t̄a0 < t̄a(r).

hat is, θ r ∈
(
1, t̄a(r)

)
⊆

(
ta(r), t̄a(r)

)
for any r ∈ (0, 1), which

implies that g is increasing in r .

Case (ii): If t̄a0 < θ ≤ t̄a1, we will show that θ r < t̄a(r) always
holds for any r ∈ (0, 1]. Given that θ r increases from 1 to θ as r
increases from 0 to 1, and 1 < t̄a0 < θ , there must exist a unique
in (0, 1), denoted by r ′

a, such that θ r = t̄a0 if and only if r = r ′
a.

Subcase (ii-1). When r < r ′
a, it is clear that θ r < t̄a0 ≤ t̄a(r).

Subcase (ii-2). Then it remains to show that when r ∈ [r ′
a, 1],

θ r and t̄a(r) have no intersection. Since θ ≤ t̄a1, it is sufficient to
how that when r ∈ [r ′

a, 1], the slope of θ r with respect to r is
strictly larger than that of t̄a(r) with respect to r . We know that

dt̄a(r)
dr

= −
ψr |t=t̄a (r)

ψt |t=t̄a (r)

=
(n − 1)t̄a(r)

(
1 − t̄a(r)

)2(1 + t̄a(r)
)2[(n − 1)t̄a(r)2 + 2(n + 1)t̄a(r) + (n − 1)

]
ln

(
t̄a(r)

)
k1

(
t̄a(r)

)
<

(n − 1)t̄a(r)
(
1 − t̄a(r)

)2(1 + t̄a(r)
)2[(n − 1)t̄a(r)2 + 2(n + 1)t̄a(r) + (n − 1)

]
ln

(
t̄a(r)

)
k2

(
t̄a(r)

)
<

(n − 1)t̄a(r)
(
t̄a(r)2 − 1

)
ln

(
t̄a(r)

)
2
[
(n − 1)t̄a(r)2 + 2(n + 1)t̄a(r) + (n − 1)

] < (n − 1)
(
t̄a(r)2 − 1

)
ln

(
t̄a(r)

)
2
(
(n − 1)t̄a(r) + 2(n + 1)

)
<

(
t̄a(r)2 − 1

)
ln

(
t̄a(r)

)
2
(
t̄a(r) + 2

) ,

where

k1(t) =
(
t2 − 1

)[
(n − 1)t2 + 2(n + 1)t + (n − 1)

]
×

[
(n − 1)(2 + r)t2 + 4(n + 1)t + (n − 1)(2 − r)

]
+ 4t

[
(n − 1)r

(
1 − t

)3(1 + t
)

+
[
(n − 1)t2 + 2(n + 1)t + (n − 1)

]2 ]
ln

(
t
)
,

2(t) = 2
(
t2 − 1

)[
(n − 1)t2 + 2(n + 1)t + (n − 1)

]2

+ 4t
[
(n − 1)r

(
1 − t

)3(1 + t
)

+
[
(n − 1)t2 + 2(n + 1)t + (n − 1)

]2 ]
ln

(
t
)
.

Note that the first inequality follows from the fact that k1
(
t̄a(r)

)
−

k2
(
t̄a(r)

)
= (t̄a(r)2 −1)

[
(n−1)t̄a(r)2 +2(n+1)t̄a(r)+ (n−1)

]
r(n−

)(t̄a(r)2−1) > 0 and the second inequality is due to the fact that
n − 1)r(1 − t̄a(r))3(1 + t̄a(r)) + [(n − 1)t̄a(r)2 + 2(n + 1)t̄a(r) +

n− 1)]2 > 0, which follows from α2 > 0, and the last inequality
ollows from the fact that (n−1)(t̄a(r)2−1) ln(t̄a(r))

2[(n−1)t̄a(r)+2(n+1)] =
(t̄a(r)2−1) ln(t̄a(r))

2
(
t̄a(r)+2+ 4

n−1

) is

increasing in n for any fixed t̄a(r) > 1.
In Step 2, we have already shown that t̄a1 < 6.5. Thus, t̄a(r) ≤

t̄a1 < 6.5 for each r ∈ (0, 1]. It is easy to derive that (t̄a(r)2−1) ln(t̄a(r))
2(t̄a(r)+2)

s increasing in t̄ (r). Thus, we get that dt̄a(r) <
(6.52−1) ln(6.5)

<
a dr 2(6.5+2)

11
4.55. Therefore, the slope of t̄a(r) with respect to r is strictly
maller than 4.55.
On the other hand,

d (θ r )
dr

= θ r
ln(θ r )

r

×
2(n − 1)θ2r + 4(n + 1)θ r + 2(n − 1)

(n − 1)(2 + r)θ2r + 4(n + 1)θ r + (n − 1)(2 − r)

> θ r
ln(θ r )

r
2

2 + r
>

2
3
θ r ln(θ r ).

Since θ r ≥ θ for each r ∈ [r ′
a, 1], which is larger than t̄a0 ≈ 4.68,

we know that d (θ r )
dr > 2

3 × 4.68 ln(4.68) > 4.81.

As a result, we must have d (θ r )
dr >

dt̄a(r)
dr for r ∈ [r ′

a, 1], which
implies that there is no intersection of θ r and t̄a(r).

Therefore, we always have (ta(r) < 1 <)θ r < t̄a(r) for any
r ∈ (0, 1], which implies that g is increasing in r .

Case (iii): If θ > t̄a1, following the same logic as in the previous
case, we always have θ r < t̄a(r) when r < r ′

a. For r ≥ r ′
a, since

d (θ r )
dr > dt̄a

dr and θ > t̄a1, there must exist a unique intersection of
r and t̄a(r), which further implies that there exists an inverted
relationship between g and r .

ummary: When β > 1, the inverted U relationship between g
nd r exists if and only if θ > t̄a1. Recall
¯a =

(n−1)t̄3a1+2(n+1)t̄2a1+(n−1)t̄a1
4n > 1. Since θ is the unique positive

solution to (n−1)θ3 +2(n+1)θ2 + (n−1)θ = 4nβ , we have that
θ > t̄a1 is equivalent to β > β̄a. Thus, the inverted U relationship
between g and r exists if and only if β > β̄a. □

A.4. Proof of Proposition 3

To consider the effect of r on b, we define the following
auxiliary function:

φ(t, r) = 1

+
4[(n − 1) + 2nt + (n − 1)t2](1 − t) ln(t)

(1 + t)[(n − 1)(2 + r)t2 + 4(n + 1)t + (n − 1)(2 − r)]
.

The following lemma establishes some properties of the func-
ion φ(t, r), which are useful for identifying the effect of r on
.

emma 5. For each r ∈ (0, 1], the equation φ(t, r) = 0 has
unique solution tb(r) in (0, 1) and a unique solution t̄b(r) in

(1,+∞). Furthermore, φ(t, r) > 0 when tb(r) < t < t̄b(r), and
(t, r) < 0 when t < tb(r) or t > t̄b(r).

roof of Lemma 5. Recall

(t, r) = 1

+
4[(n − 1) + 2nt + (n − 1)t2](1 − t) ln(t)

(1 + t)[(n − 1)(2 + r)t2 + 4(n + 1)t + (n − 1)(2 − r)]
.

et φr =
∂φ

∂r and φt =
∂φ

∂t .
We know that φt is given in Box II

Rewrite the above expression as follows

φt = α3(1 − t) − α4 ln(t),

here

3 =
4[(n − 1)t2 + 2nt + (n − 1)]

t(1 + t)[(n − 1)(2 − r) + 4(n + 1)t + (n − 1)(2 + r)t2]

4 =
8[(n − 1)r(1 − t)3(1 + t) + 2n2(1 + t)4 − 2n(1 + t)2(1 + t2) − 4t(1 − t)2]

(1 + t)2[(n − 1)(2 − r) + 4(n + 1)t + (n − 1)(2 + r)t2]2
.
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φt =
4(1 − t)[(n − 1)t2 + 2nt + (n − 1)]

t(1 + t)[(n − 1)(2 − r) + 4(n + 1)t + (n − 1)(2 + r)t2]

−
8(n − 1)r(1 − t)3(1 + t) ln(t)

(1 + t)2[(n − 1)(2 − r) + 4(n + 1)t + (n − 1)(2 + r)t2]2

−
16[n(n − 1)t4 + 2(2n + 1)(n − 1)t3 + 2(3n2

− n + 2)t2 + 2(2n + 1)(n − 1)t + n(n − 1)] ln(t)
(1 + t)2[(n − 1)(2 − r) + 4(n + 1)t + (n − 1)(2 + r)t2]2

.

Box II.
2

S

t

T

t

θ

T

t is clear that α3 > 0. We can also show that α4 > 0, since

4 =
8[(n − 1)r(1 − t)3(1 + t) + 2n(n − 1)(1 + t)4 + 4nt(1 + t)2 − 4t(1 − t)2]

(1 + t)2[(n − 1)(2 − r) + 4(n + 1)t + (n − 1)(2 + r)t2]2

>
8(n − 1)(1 + t)[r(1 − t)3 + 2n(1 + t)3]

(1 + t)2[(n − 1)(2 − r) + 4(n + 1)t + (n − 1)(2 + r)t2]2
> 0.

Therefore, φt > 0 if 0 < t < 1 and φt < 0 if t > 1.
We also have that

φr =
4(n − 1)(1 − t)2[(n − 1)t2 + 2nt + (n − 1)] ln(t)
[(n − 1)(2 + r)t2 + 4(n + 1)t + (n − 1)(2 − r)]2

.

learly, φr > 0 if t > 1 and φr < 0 if 0 < t < 1.
Fix r ∈ (0, 1]. Since φ is strictly increasing in t on (0, 1) and

imtn↓0 φ(t, r) < 0 < limtn↑1 φ(t, r), the equation φ(t, r) = 0 has
a unique solution in (0, 1), denoted by tb(r). Moreover, we have
< 0 if t < tb(r) and φ > 0 if tb(r) < t < 1.
On the other hand, since φ is strictly decreasing in t on

(1,+∞) and limtn↓1 φ(t, r) > 0 > limtn↑∞ φ(t, r), the equation
φ(t, r) = 0 has a unique solution in (1,+∞), denoted by t̄b(r).
oreover, we have φ > 0 if 1 < t < t̄b(r) and φ < 0 if

t > t̄b(r).
In sum, for any r ∈ (0, 1], we have tb(r) < 1 < t̄b(r) and

φ

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

< 0, if t < tb(r),
= 0, if t = tb(r),
> 0, if tb(r) < t < t̄b(r),
= 0, if t = t̄b(r),
< 0, if t̄b(r) < t. □

Proof of Proposition 3. If β = 1, we know that θ = 1. In this
case, b =

[ rV
4n

] 1
2 , which is strictly increasing in r . In the following,

e focus on the case where β ̸= 1. Let β
b

= δ
(
tb(1)

)
< 1 and

β̄b = δ
(
t̄b(1)

)
> 1

Step 1

Recall b = θ

[
(n−1)rVθ2

4nβ(nβ−θ2)

] 1
2
. To see the effect of r on b, we

just need to consider the effect of r on h(r, θ ) =
rθ4

nβ−θ2
. We have

hat

dh
dr

=
∂h
∂r

+
∂h
∂θ

dθ
dr

=
θ4

nβ − θ2
+

2rθ3(2nβ − θ2)
(nβ − θ2)2

dθ
dr

=
θ4

nβ − θ2
+

2rθ3(2nβ − θ2)
(nβ − θ2)2

×
θ (n − 1)(1 + θ r )(1 − θ r ) ln(θ )

(n − 1)(2 + r)θ2r + 4(n + 1)θ r + (n − 1)(2 − r)

=
θ4

nβ − θ2

[
1 +

2r(2nβ − θ2)
nβ − θ2

×
(n − 1)(1 + θ r )(1 − θ r ) ln(θ )

]

(n − 1)(2 + r)θ2r + 4(n + 1)θ r + (n − 1)(2 − r) 2

12
=
θ4

nβ − θ2

[
1

+
4[(n − 1)θ2r + 2nθ r + (n − 1)](1 − θ r ) ln(θ r )

(1 + θ r )[(n − 1)(2 + r)θ2r + 4(n + 1)θ r + (n − 1)(2 − r)]

]
,

where the second equality follows from Eq. (7) and the last
equality is due to 2nβ−θ2

nβ−θ2
= 2 +

θ2

nβ+θ2
= 2 +

4θ r

(n−1)(1+θ r )2
=

(n−1)θ2r+2nθ r+(n−1)
(n−1)(1+θ r )2

.
Since Lemma 1 shows θ <

√
β , we know that dh

dr > 0 if and
only if φ(θ r , r) > 0. By Lemma 5, we further know that dh

dr > 0 if
and only if tb(r) < θ r < t̄b(r).

tep 2
For each r ∈ (0, 1], we already have φ

(
tb(r), r

)
= 0, φ

(
t̄b(r), r

)
= 0, and tb(r) < 1 < t̄b(r). Hence, Implicit Function Theorem and
he proof of Lemma 5 imply that

dtb(r)
dr

= −
φr |t=tb(r)

φt |t=tb(r)
> 0 and

dt̄b(r)
dr

= −
φr |t=t̄b(r)

φt |t=t̄b(r)
> 0.

herefore, both tb(r) and t̄b(r) are strictly increasing in r . Define

b0 = lim
r↓0

tb(r), tb1 = lim
r↑1

tb(r), t̄b0 = lim
r↓0

t̄b(r), t̄b1 = lim
r↑1

t̄b1(r).

Note that since both limr↓0 φ(t, r) and limr↑0 φ(t, r) depend on n,
it is natural that tb0, tb1, t̄b0, and t̄b1 should all depend on n.

We can narrow down the range of t̄b0 and t̄b1. Notice that
φ(3.7, 1) ≈

−30.74n−25.16
4.7(59.87n−27.27) < 0. Since φ is strictly decreasing

in t on (1,+∞), we have t̄b1 < 3.7. Moreover, we find that
φ(2.5, 0) ≈

18.40n−24
3.5(24.5n−4.5) > 0. Since φ is strictly decreasing in t

on (1,+∞), we have t̄b0 > 2.5.
To see the effect of r on θ r , recall that

d (θ r )
dr

= θ r ln(θ )

×
2(n − 1)θ2r + 4(n + 1)θ r + 2(n − 1)

(n − 1)(2 + r)θ2r + 4(n + 1)θ r + (n − 1)(2 − r)
.

Step 3
Consider the case when 0 < β < 1. Then we have 0 <

< 1, which implies that d (θ r )
dr < 0. Therefore, as r increases

from 0 to 1, θ r decreases from 1 to θ . Let β
b

= δ
(
tb(1)

)
=

(n−1)t3b1+2(n+1)t2b1+(n−1)tb1
4n < 1.

Case (i): Consider the case when (1 >)θ ≥ tb1. Since (n − 1)θ3 +

2(n + 1)θ2 + (n − 1)θ = 4nβ , θ ≥ tb1 is equivalent to β ≥ β
b
.

For any r ∈ (0, 1), we always have that

1 > θ r > θ ≥ tb1 > tb(r).

hat is, for any r ∈ (0, 1), we have that θ r ∈
(
tb(r), 1

)
⊆(

tb(r), t̄b(r)
)
, which implies that dh

dr > 0.

Case (ii): Consider the case when θ < tb1(< 1). Since (n− 1)θ3 +

(n + 1)θ2 + (n − 1)θ = 4nβ , θ < t is equivalent to β < β .
b1 b
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We know that

im
r↓0
θ r = 1 > tb0 and lim

r↑1
θ r = θ < tb1.

ince θ r is decreasing in r (from 1 to θ ) and tb(r) is increasing in
(from tb0 to tb1), there must exist s unique r in (0, 1), denoted
y rb, such that θ rb = tb(rb), θ

r > tb(r) if r < rb, and θ r < tb(r) if
b < r ≤ 1. As a result, θ r is between tb(r) and t̄b(r) when r < rb
and θ r is outside of

(
tb(r), t̄b(r)

)
when r ≤ rb. Thus, there exists

an inverted U relationship between h and r .

Summary: When β
b

≤ β < 1, h is increasing in r , and when
< β

b
, there exists an inverted U relationship between h and r .

tep 4
Consider the case when β > 1. Then we have θ > 1, which

mplies that d (θ r )
dr > 0. Therefore, as r increases from 0 to 1,

θ r increases from 1 to θ . We aim to show that there exists an
inverted U relationship between h and r if and only if β is above
certain threshold. We consider the following three cases.

ase (i): If θ ≤ t̄b0, then for any r ∈ (0, 1),

< θ r < θ ≤ t̄b0 < t̄b(r).

hat is, θ r ∈
(
1, t̄b(r)

)
⊆

(
tb(r), t̄b(r)

)
for any r ∈ (0, 1), which

implies that h is increasing in r .

Case (ii): If t̄b0 < θ ≤ t̄b1, we will show that θ r < t̄b(r) always
holds for any r ∈ (0, 1]. Given that θ r increases from 1 to θ as
increases from 0 to 1, and 1 < t̄b0 < θ , there must exist the
nique r , denoted by r ′

b, such that θ r = t̄b0 if and only if r = r ′

b.
Subcase (ii-1). When r < r ′

b, it is clear that θ r < t̄b0 ≤ t̄b(r).
Subcase (ii-2). Then it remains to show that when r ∈ [r ′

b, 1],
r and t̄b(r) have no intersection. Since θ ≤ t̄b1, it is sufficient to

show that when r ∈ [r ′

b, 1], the slope of θ r with respect to r is
strictly larger than that of t̄b(r) with respect to r . We know that
dt̄b(r)
dr

= −
φr |t=t̄b (r)

φt |t=t̄b (r)

=
(n − 1)t̄b(r)

(
1 − t̄b(r)

)2(1 + t̄b(r)
)2

[(n − 1)t̄b(r)2 + 2nt̄b(r) + (n − 1)] ln
(
t̄b(r)

)
k3

(
t̄b(r)

)
<

(n − 1)t̄b(r)
(
1 − t̄b(r)

)2(1 + t̄b(r)
)2

[(n − 1)t̄b(r)2 + 2nt̄b(r) + (n − 1)] ln
(
t̄b(r)

)
k4

(
t̄b(r)

)
<

(n − 1)t̄b(r)
(
t̄b(r)2 − 1

)
ln

(
t̄b(r)

)
2[(n − 1)t̄b(r)2 + 2nt̄b(r) + (n − 1)]

<
(n − 1)

(
t̄b(r)2 − 1

)
ln

(
t̄b(r)

)
2[(n − 1)t̄b(r) + 2n]

<

(
t̄b(r)2 − 1

)
ln

(
t̄b(r)

)
2(t̄b(r) + 2)

where

k3(t) = (t2 − 1)
[
(n − 1) + 2nt + (n − 1)t2

]
×

[
(n − 1)(2 + r)t2 + 4(n + 1)t + (n − 1)(2 − r)

]
+ 2t

[
(n − 1)r(1 − t)3(1 + t) + 2n2(1 + t)4

− 2n(1 + t)2(1 + t2) − 4t(1 − t)2
]
ln(t)

k4(t) = 2(t2 − 1)
[
(n − 1) + 2nt + (n − 1)t2

]
×

[
(n − 1) + 2(n + 1)t + (n − 1)t2

]
+ 2t

[
(n − 1)r(1 − t)3(1 + t) + 2n2(1 + t)4

− 2n(1 + t)2(1 + t2) − 4t(1 − t)2
]
ln(t).

Note that the first inequality follows from k3
(
t̄b(r)

)
> k4

(
t̄b(r)

)
and the last inequality follows from the fact that (n−1)(t̄b(r)2−1) ln(t̄b(r)

2[(n−1)t̄b(r)+2n]
(t̄b(r)2−1) ln(t̄b(r))
2[t̄b(r)+2+ 2

n−1 ]
is increasing in n for any fixed t̄b(r) > 1.

In Step 2, we have already shown that t̄b1 < 3.7. Thus, t̄b(r) ≤

t̄b1 < 3.7 for each r ∈ (0, 1]. It is easy to derive that (t̄b(r)2−1) ln(t̄b(r))
2(t̄b(r)+2)

s increasing in t̄ (r). Thus, we get that dt̄b(r) <
(3.72−1) ln(3.7)

<
b dr 2(3.7+2)

13
.46. Therefore, the slope of t̄b(r) with respect to r is strictly
maller than 1.46.
On the other hand, we already have t̄b0 > 2.5. Thus, d (θ r )

dr >
2
3θ

r ln(θ r ) > 2
3 t̄b0 ln(t̄b0) > 1.52.

As a result, we must have d (θ r )
dr >

dt̄b(r)
dr for r ∈ [r ′

b, 1], which

implies that there is no intersection of θ r and t̄b(r).
Therefore, we always have (tb(r) < 1 <)θ r < t̄b(r) for any

r ∈ (0, 1], which implies that h is increasing in r .

Case (iii): If θ > t̄b1, following the same logic as in the previous
case, we always have θ r < t̄b(r) when r < r ′

b. For r ≥ r ′

b, since
d (θ r )
dr >

dt̄b(r)
dr and θ > t̄b1, there must exist a unique intersection

f θ r and t̄b(r), which further implies that there exists an inverted
relationship between h and r .

ummary: When β > 1, the inverted U relationship between
and r exists if and only if θ > t̄b1. Recall

¯b =
(n−1)t̄3b1+2(n+1)t̄2b1+(n−1)t̄b1

4n . Since θ is the unique positive
solution to (n−1)θ3 +2(n+1)θ2 + (n−1)θ = 4nβ , we have that
θ > t̄b1 is equivalent to β > β̄b. Thus, the inverted U relationship
between h and r exists if and only if β > β̄b. □

A.5. Proof of Proposition 4

Proof of Proposition 4. Recall that c =

[
rV (nβ−θ2)
4n(n−1)β

] 1
2
. When

β = 1, c =
[ rV
4n

] 1
2 , which is strictly increasing in r . To see the

effect of r on c when β ̸= 1, we just need to look at the effect of
r on f (r, θ ) = r(nβ − θ2).

Note that
df
dr

=
∂ f
∂r

+
∂ f
∂θ

dθ
dr

= nβ − θ2 − 2rθ
dθ
dr

= nβ − θ2

− 2rθ
θ (n − 1)(1 + θ r )(1 − θ r ) ln(θ )

(n − 1)(2 + r)θ2r + 4(n + 1)θ r + (n − 1)(2 − r)

=
(n − 1)θ2(1 + θ r )2

4θ r

−
2(n − 1)θ2(1 + θ r )(1 − θ r ) ln(θ r )

(n − 1)(2 + r)θ2r + 4(n + 1)θ r + (n − 1)(2 − r)

= (n − 1)θ2(1 + θ r )
[
1 + θ r

4θ r

−
2(1 − θ r ) ln(θ r )

(n − 1)(2 + r)θ2r + 4(n + 1)θ r + (n − 1)(2 − r)

]
,

here the third equality follows from Eq. (7). It is clear that
df
dr > 0 for any r ∈ (0, 1], and c is strictly increasing in r . □

A.6. Proofs of Lemma 3, Propositions 5, and 6

Proof of Lemma 3. It is straightforward to have that

db
dr

=
dθ
dr

a + θ
da
dr
< θ

da
dr
.

Thus, when a is decreasing in r , bmust also be decreasing in r . □

Proof of Proposition 5. Note that

b+(n−1)c =
nβ

a =
nβ

[
(n − 1)rVθ2

2

] 1
2

=

[
(n − 1)nβrV

2

] 1
2

.

θ θ 4nβ(nβ − θ ) 4(nβ − θ )
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hen β = 1, then θ = 1, and hence b+ (n−1)c =
[ nrV

4

] 1
2 , which

s strictly increasing in r . In the following, we focus on the case
hen β ̸= 1.
To see the effect of r on b+ (n−1)c , it suffices to consider the

ffect of r on y(r, θ ) =
r

nβ−θ2
. We have that

dy
dr

=
∂y
∂r

+
∂y
∂θ

dθ
dr

=
1

nβ − θ2
+

2θr
(nβ − θ2)2

dθ
dr

=
1

nβ − θ2
+

2θr
(nβ − θ2)2

×
θ (n − 1)(1 + θ r )(1 − θ r ) ln(θ )

(n − 1)(2 + r)θ2r + 4(n + 1)θ r + (n − 1)(2 − r)

=
1

nβ − θ2

[
1 +

8θ r

1 + θ r

×
(1 − θ r ) ln(θ r )

(n − 1)(2 + r)θ2r + 4(n + 1)θ r + (n − 1)(2 − r)

]
,

here the third and fourth equalities follow from Eqs. (7) and (5),
espectively.

Let

(t, r) = 1

+
8t(1 − t) ln(t)

(1 + t)
[
(n − 1)(2 + r)t2 + 4(n + 1)t + (n − 1)(2 − r)

] .
t is shown in Lemma 1 that θ <

√
β , so we know that dy

dr > 0
if and only if ϕ(θ r , r) > 0. It is easy to see that when t > 0 and
r ∈ (0, 1],

ϕ(t, r) = 1 +
8t(1 − t) ln(t)

(1 + t)
[
(n − 1)(2 + r)t2 + 4(n + 1)t + (n − 1)(2 − r)

]
≥ 1 +

8t(1 − t) ln(t)
(1 + t)

[
(2 + r)t2 + 12t + (2 − r)

] ,
here the last expression is denoted by ϕ(t, r). We shall show
hat ϕ(t, r) > 0 for each t > 0 and each r ∈ (0, 1]. If t = 1, then
(1, r) = 1 > 0 no matter of the value of r .
It is easy to see that

∂ϕ

∂r
=

8(1 − t)2t ln(t)
[(2 + r)t2 + 12t + 2 − r]2

.

bviously,
∂ϕ

∂r > 0 when t > 1, and
∂ϕ

∂r < 0 when 0 < t < 1.
We first consider the case when t > 1. In this case, we have

∂ϕ

∂r > 0. Thus, ϕ(t, r) ≥ ϕ(t, 0) = 1−
4t(t−1) ln(t)

(t+1)[t2+6t+1]
> 1−

4 ln(t)
t+6 . To

how that 1 −
4 ln(t)
t+6 > 0 on t ∈ (1,+∞), we just need to show

hat t + 6 − 4 ln(t) > 0 on t ∈ (1,+∞). It is easy to see that
+ 6 − 4 ln(t) is minimized at t = 4 on t ∈ (1,+∞) and the

minimal is 10 − 4 ln(4) ≈ 4.45.
We next consider the case when 0 < t < 1. Then

∂ϕ

∂r < 0.
Thus, ϕ(t, r) ≥ ϕ(t, 1) = 1 +

8t(1−t) ln(t)
(1+t)[3t2+12t+1]

> 1 +
8t ln(t)
12t+1 . To

how that 1 +
8t ln(t)
12t+1 > 0 on t ∈ (0, 1), we just need to show

that 12t+1
8t + ln(t) > 0 on t ∈ (0, 1). It is easy to show that

12t+1
8t + ln(t) is minimized at t =

1
8 on t ∈ (0, 1), and the minimal

s 5
2 − ln(8) ≈ 0.42.
Therefore, dy

dr is always positive, that is, b+ (n− 1)c is strictly
ncreasing in r ∈ (0, 1]. □

roof of Proposition 6. By Lemma 1, we have that β > 1 if and
nly if θ > 1.
 r

14
To see the effect of r on the total effort of all the agents, it
uffices to see the effect of r on z(r, θ ) =

r(θ+nβ)2

nβ−θ2
. We have that

dz
dr

=
∂z
∂r

+
∂z
∂θ

dθ
dr

=
(θ + nβ)2

nβ − θ2
+

2r(θ + nβ)[nβ(1 + θ )]
(nβ − θ2)2

dθ
dr

=
(θ + nβ)2

nβ − θ2

[
1 +

2r[nβ(1 + θ )]
(nβ − θ2)(θ + nβ)

×
θ (n − 1)(1 + θ r )(1 − θ r ) ln(θ )

(n − 1)(2 + r)θ2r + 4(n + 1)θ r + (n − 1)(2 − r)

]
=

(θ + nβ)2

nβ − θ2

ζ (r, θ )
ζ0(r, θ )

,

here

0(r, θ ) = (1 + θ r )
[
(n − 1)(1 + θ r )2 + 4θ r + 4θ r−1]

×
[
(n − 1)(2 + r)θ2r + 4(n + 1)θ r + (n − 1)(2 − r)

]
,

ζ (r, θ ) = ζ0(r, θ ) + 8
[
(n − 1) + 2(n + 1)θ r + (n − 1)θ2r

]
× (θ r−1

+ θ r )(1 − θ r ) ln(θ r ).

ote that the third and fourth equalities follow from Eqs. (7) and
5), respectively.

It is shown in Lemma 1 that θ <
√
β . Clearly, ζ0(r, θ ) > 0

hen θ > 1. Thus, dz
dr > 0 if and only if ζ (r, θ ) > 0.

Since rθ2r − r = r(θ2r − 1) > 1, we have that

ζ0(r, θ )

(1 + θ r )
[
(n − 1)(1 + θ r )2 + 4θ r + 4θ r−1]

×
[
(n − 1)(2 + r)θ2r + 4(n + 1)θ r + (n − 1)(2 − r)

]
(1 + θ r )

[
(n − 1)(1 + θ r )2 + 4θ r + 4θ r−1]

×
[
2(n − 1)θ2r + 4(n + 1)θ r + 2(n − 1)

]
.

herefore,

(r, θ ) = ζ0(r, θ ) + 8
[
(n − 1) + 2(n + 1)θ r + (n − 1)θ2r

]
× (θ r−1

+ θ r )(1 − θ r ) ln(θ r )

> (1 + θ r )
[
(n − 1)(1 + θ r )2 + 4θ r + 4θ r−1]

×
[
2(n − 1)θ2r + 4(n + 1)θ r + 2(n − 1)

]
+ 4

[
2(n − 1)θ2r + 4(n + 1)θ r + 2(n − 1)

]
× (θ r−1

+ θ r )(1 − θ r ) ln(θ r )

=
[
2(n − 1)θ2r + 4(n + 1)θ r + 2(n − 1)

]
ζ1(r, θ ),

here ζ1(r, θ ) = (n− 1)(1+ θ r )3 + 4(θ r−1
+ θ r )

[
1+ θ r + ln(θ r )−

r ln(θ r )
]
. Then we have that

ζ1(r, θ ) > (1 + θ r )3 + 4(θ r−1
+ θ r )

×
[
1 + θ r + ln(θ r ) − θ r ln(θ r )

]
θ3r + 7θ2r + 7θ r + 1 + 4θ r−1

+ 4θ2r−1  
>0

+4θ r ln(θ r )

+ 4θ r−1 ln(θ r )  
>0

− 4θ2r−1 ln(θ r )  
<4θ2r ln(θ r )

−4θ2r ln(θ r )

> θ3r + 7θ2r + 7θ r + 1 + 4θ r ln(θ r ) − 8θ2r ln(θ r ).

It is easy to find that the function ζ (x) = x3 + 7x2 + 7x + 1 +

x ln(x) − 8x2 ln(x) > 0 when x > 1. Hence, ζ (r, θ ) > 0 when
> 1, which means that the total effort is strictly increasing in

. □
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Fig. 11. The relationship between the conflict intensity and r (β = 0.0001 and n = 30, 100, 200).
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.7. Wave relationship

We would like to provide more discussion on the relationship
etween the returns to scale technology r and the conflict inten-
ity. According to the numerical example shown in Fig. 6, one
ay conjecture that given β < 1 and a relatively large integer
, there exist two cutoff points β1 and β2 with 0 < β1 < β2 < 1:

(1) When 0 < β < β1, there exists an inverted U relationship
between conflict intensity and returns to scale technology; (2)
When β ∈ (β1, β2), we have a wave relationship in which
the conflict intensity first increases, then decreases, and finally
increases with the level of returns to scale; (3) When 1 > β > β2,
the conflict intensity increases with the level of returns to scale.

Intuitively, with an extremely small β (e.g., β ∈ (β1, β2)), the
singular agent has a cost advantage and a population disadvan-
tage. The competition effect dominates for all agents under a low
level of returns to scale. While when the level of returns to scale
increases to a moderate level, the discouragement effect between
the singular agent and common agents dominates, causing the
equilibrium efforts of those groups to decrease, and therefore the
total effort to decrease. However, when the level of returns to
scale further increases to a high level, although the equilibrium
effort of (or against) the singular agent (a and b) keeps decreasing,
ue to the population advantage, the competition effect among
he common agents themselves ((n−1)c) is strictly dominant the
iscouragement effect from (or against) the singular agent, hence
he total effort eventually increases. Figs. 6(b) gives the details
or the equilibrium efforts of all the agents, the center, and all
he others except the center when β = 0.0001 and n = 100.

Moreover, when the number of common agents n increases,
the second critical point of returns to scale for total effort will
appear earlier since the population advantage becomes more ap-
parent. Therefore, when the number of common agents is small,
the second critical point of r is greater than 1. As a result, on
the interval r ∈ (0, 1], no wave relationship exists, and we can
only observe an inverted U. When the number of common agents
increases, the first critical point of returns to scale for total effort
will appear earlier, which is also due to the huge population
disadvantage. This follows from conventional wisdom.

The following figure illustrates another numerical example.
Given V = 10 and β = 0.0001, Fig. 11(a) depicts the conflict

intensity with n being 30, 100, and 200. (1) When n = 200, the
conflict intensity increases with the level of returns to scale. (2)
When n = 30, there exists an inverted U relationship between
the conflict intensity and returns to scale technology. (3) When
15
n = 100, we have a wave relationship between the conflict
intensity and returns to scale technology.

One may also conjecture that given a relatively small β <

1, there exist two cutoff points n1 and n2 with n1 < n2: (1)
When n < n1, there exists an inverted U relationship between
the conflict intensity and returns to scale technology; (2) When
n ∈ (n1, n2), we have a wave relationship; (3) When n > n2, the
onflict intensity increases with the level of returns to scale.
From this, it may be inferred that the wave relationship occurs

nly when β and n are relatively balanced; that is, β is mod-
rately small with respect to n and n is moderately large with
esponse to β .
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