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This paper studies the effort-maximizing design of a team contest with an arbitrary number 
(odd or even) of pairwise battles. In a setting with full heterogeneity across players and battles, 
the organizer determines the prize allocation rule (or the winning rule of an indivisible prize) 
contingent on battle outcomes. We propose a measure of team’s strength, which plays a crucial 
role in prize design. The optimal design is a majority-score rule with a headstart score granted 
to the weaker team: All battles are assigned team-invariant scores, the weaker team is given an 
initial headstart score which is the difference in strengths between teams, and the team collecting 
higher total scores from its winning battles wins the entire prize. The optimal rule resembles the 
widely-adopted Elo rating system.

1. Introduction

In many competitive circumstances, contenders from different teams compete in pairs on multiple disjoint fronts, and the winning 
team is determined by their overall performance over a series of battles. This type of team competition featuring pairwise battles 
can be found in R&D competitions, sporting events with team titles, political campaigns, and other competitive environments.1 Fu 
et al. (2015) have conducted a thorough game-theoretical analysis of these team contests while assuming an exogenous majoritarian 
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winning rule, i.e., a team wins the entire prize if it wins a majority of battles. In many of these competitions, a central question 
for the contest organizer, however, is how to appropriately design the prize allocation rule (or equivalently the winning rule if the 
prize is indivisible) to incentivize a more productive effort supply.2 In this paper, we aim to answer this question by studying the 
effort-maximizing prize design in such team contests.3

The best-of-𝑁 winning rule (also referred to as the simple majority rule) is prevalent in such contests. For example, it is typically 
adopted in sporting events with team titles and the election for the House of Representatives between Republicans and Democrats 
(see, e.g., Snyder (1989), Klumpp and Polborn (2006)). This rule treats two opposing teams equally and allocates the entire prize to 
the team that wins the majority of battles. Apparently, it depends neither on the teams’ identities nor on the order of wins.

Despite its popularity, it remains unclear whether this simple majority rule is most effective in inducing effort supply when a 
contest organizer has the freedom to set the prize structure. Generally, a prize allocation rule can be contingent on both the teams’ 
identities and the full history of battle outcomes. Consider an R&D race between a local research alliance and a foreign team. The 
foreign team usually has to outperform the local team by a sufficient margin to win the competition held by a local government. 
Moreover, the allocation rule can depend on the composition of winning battles rather than the number of winning battles, as in 
the US presidential election. Interesting questions thus arise: What does the optimal prize rule look like in general? Is there any 
theoretical rationale for adopting the majority rule beyond the justification of simplicity and fairness? How does the optimal design 
react to the degree of asymmetry between teams and the heterogeneity across battles?

To address these questions, we study the effort-maximizing prize allocation rules by granting a contest organizer full flexibility 
in rewarding each team based on the entire path of battle outcomes and the team’s identity. We restrict our attention to the prize 
allocation rules that satisfy nonnegativity, monotonicity, and budget balance conditions, implying that the prizes are nonnegative, 
additional battle victory is never detrimental, and the prize budget is always wholly awarded. In our model, two teams with the same 
number (𝑁) of players compete with each other. Each player from one team is exogenously matched to his counterpart from the 
rival team, and the matched pairs compete head-to-head on their own battlefields. The winner of each battle is determined through a 
winner-selection mechanism that exhibits homogeneity of degree zero in players’ efforts (e.g., generalized Tullock contest). The team 
prize is a public good among its members, and each player chooses his own effort to maximize his payoff. Our study accommodates 
full-fledged heterogeneity: the contest technologies can differ across battles, and players can be completely heterogeneous within or 
across teams in their marginal effort costs.

We first formulate the contest organizer’s effort-maximizing problem subject to the feasibility conditions of the prize structures. 
Under the budget balance condition, the history-independence result originally established by Fu et al. (2015) extends to our setting, 
which means that each battle can be viewed as independent lotteries with equilibrium winning probabilities irrelevant to the prize 
structure. Thus, the effective prize spread in each battle is a linear combination of prizes. The homogeneity of degree zero contest 
technology implies that each player’s effort is proportional to the prize spread in each battle.4 Moreover, nonnegativity, monotonicity, 
and budget balance conditions are all linear constraints, so the feasible prize allocation rules constitute a polytope. Thereby, both 
the total effort function and the constraints on the prize structures are linear in prizes.

The optimal prize design is established using an iterative adjustment method that consists of two steps. First, we show that the 
optimal design must be a vertex solution by applying the fundamental theorem of linear programming. This implies that the entire 
reward must be allocated to one team while the other team receives nothing, precluding the possibility of any intermediary rewards. 
Second, we iteratively eliminate the sub-optimal prize rules from the set of vertex rules, which renders the closed-form optimal rule. 
In this process, we discover an innovative measurement for assessing a team’s strengths by aggregating the strengths of its members, 
which is crucial for identifying and interpreting the optimal design.

The optimal design takes a surprisingly simple and elegant form of a majority-score rule with a headstart score to the weaker team: 
All battles are assigned scores, which generally differ across battles. Both teams earn the same score for winning a battle. The battle 
score is proportional to the unbalancedness of the battle, weighted by the effectiveness in effort inducement.5 The weaker team is 
endowed with an initial score to start, which equals the difference in team strengths. At the end of the game, the team collecting 
higher total scores wins the entire prize. The analysis is fully applicable when the designer maximizes the sum of weighted efforts 
across battles. One only needs to normalize players’ marginal effort costs in each battle by the weight associated with the battle, and 
then apply the same procedure to pin down the optimal design.

We then proceed to a prominent special case, in which the winner-selection mechanism is uniform across battles, and players 
on each team are homogeneous. This setting only incorporates pure asymmetry between teams in terms of their players’ marginal 
effort costs, which helps delineate the impact of the battle heterogeneity on the prize design. With homogeneous battles, all battles 
are assigned the same score, and a player’s incentive depends only on his own ability and that of his opponent.6 In this case, the 
optimal prize design is a path-independent rule named majority rule with a headstart, which allocates the entire prize to the team 

2 In sports context, the organizer typically values the effort supply of all players. In R&D competitions, every research team’s effort contributes to generating 
innovative ideas for addressing the concerned issues. In political competitions, it is essential to incentivize all members from both parties to exert substantial efforts 
to maintain the operation of a healthy society.

3 While Fu et al. (2015) adopt a majoritarian winning rule in their analysis, we accommodate a general class of prize allocation rules to identify the optimal prize 
design. Moreover, we generalize Fu et al. (2015) to settings with an arbitrary number of battles.

4 Please refer to Fu et al. (2015) for detail.
5 The effectiveness is measured by the ratio of induced effort to prize spread; the unbalancedness of the battle is measured by the reciprocal of the product of 

players’ winning chances.
2

6 With full-fledged heterogeneity, battles, in general, carry different scores, and therefore a player’s incentive for exerting effort also depends on the specific battle.
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winning a sufficient number of battles and favors the weaker team by awarding it a headstart in terms of an initial number of wins. 
Equivalently, the optimal rule rewards the entire prize to the stronger team when it wins at least 𝐾𝑆 (> 𝑁∕2) battles; otherwise, the 
weaker team obtains the entire prize.

Our results indicate that the optimal design manages team asymmetry and battle heterogeneity completely through the headstart 
score and battle scores, respectively. Searching for the optimal design does not require going beyond a parsimonious class of score-

based majority rules with a headstart. First, the designer uses a headstart to favor the underdog and handicap the favorite to level 
the playing field. Second, a higher battle score is assigned to a more productive battle to better incentivize its players. If all battles 
carry very close scores and two teams have similar levels of overall strengths, the widely adopted best-of-𝑁 rule is approximately 
optimal. These findings dramatically simplify the procedure to design the optimal prize rule and provide useful guidance on how to 
incentivize players in a pairwise team competition.

We further find that the optimal design can be alternatively interpreted from the perspective of the Elo rating system, which is 
broadly adopted by sports associations to rate players in bilateral games. By Elo rating, the winner of a game gains certain rating 
points from the loser, and the underdog can obtain more points than the favorite through a win. If a team’s Elo rating change is 
measured as the sum of its players’ Elo rating changes, our optimal design indicates that the team whose Elo rating improves takes 
the entire prize.7

Our paper primarily belongs to the literature on multi-battle contests, in which one branch focuses on contests between individuals 
while the other studies contests between teams. For the first branch, many studies discover strategic momentum/discouragement 
effect in dynamic individual contests, including Harris and Vickers (1987); Ferrall and Smith (1999); Klumpp and Polborn (2006); 
Konrad and Kovenock (2009); Gelder (2014); and Gauriot and Page (2019), among others. Other papers focus on prize designs in 
dynamic contests between individual players, including Feng and Lu (2018); Jiang (2018); Sela and Tsahi (2020); and Clark and 
Nilssen (2020), among others. In particular, Feng and Lu (2018) study the optimal contingent prize allocation in a sequential three-

battle contest between two players. Lemus and Marshall (2022) provide empirical and experimental evidence showing that allowing 
contingent prizes can significantly improve contest outcomes in dynamic multi-battle contests.8

Our study aligns more closely with the literature on team contests. Fu et al. (2015) are the first to investigate team contests 
involving odd-length pairwise battles. Their research primarily focuses on equilibrium characterization under a simple majority rule 
and establishing related qualitative regularities and properties of the equilibrium including history independence.9 Häfner (2017, 
2022) analyzes tug-of-war contests between two teams, in which a team first accumulates 𝑛 more battle victories than the other 
team wins the tug-of-war. Barbieri and Serena (2021) show that a simultaneous contest maximizes the winners’ effort under the 
majority winning rule. Konishi et al. (2022) analyze equilibrium player ordering in majoritarian team contests. Differing from those 
studies, we endogenize the prize allocation rule by identifying the effort-maximizing prize structures while allowing full-fledged 
heterogeneity and an arbitrary number of battles. While setting up our design problem as a linear program crucially relies on the 
history independence result established by Fu et al. (2015), solving the problem and fully establishing the optimal design explicitly 
are far from trivial. We develop an elimination technique to establish a majority-score rule with a headstart as the optimal design, 
which generally differs from the simple majority rule.

Our paper is also closely related to the studies on single-battle group contests. Many of these assume that a group’s win is a 
public good among its members, including Baik et al. (2001); Barbieri et al. (2014); Topolyan (2014), Chowdhury et al. (2016); Eliaz 
and Wu (2018); Crutzen et al. (2020); and Arbatskaya and Konishi (2023). In their settings, team performance is determined by a 
function aggregating efforts of all members.10 While in ours, a team’s performance is instead evaluated by the full path of battle 
outcomes, which differs from most studies in this stream of the literature. Moreover, we focus on the effort-maximizing prize design 
in team contests.

Our paper also speaks to the literature on biased contests and their optimal design, including Li and Yu (2012); Pastine and 
Pastine (2012); Franke et al. (2013); Seel and Wasser (2014); Fu and Wu (2020), among others. These studies mainly concern the 
design of multiplicative biases and additive headstarts in Tullock contests. Our paper differs from the literature in two aspects. First, 
we consider a team contest setting with multiple pairwise battles. Second, we study the optimal prize allocation rule based on battle 
outcomes. We find that an additively biased prize allocation rule can be optimal when teams are sufficiently heterogeneous.

The rest of the paper is organized as follows. In Section 2, we set up the model. We study the optimal prize design in Section 3. 
Section 4 presents some major properties of the optimal design, illustrates several possible extensions, and discusses the main impli-

cations of our results. Section 5 concludes. The appendix collects some technical proofs.

2. The model

Two teams, indexed by 𝐴 and 𝐵, compete in a contest with 𝑁 (odd or even) pairwise battles. Each team consists of 𝑁 risk-neutral 
players, and each player on one team is matched to his opponent from the rival team. The matched players compete head-to-head on 

7 By construction, the sum of the two teams’ Elo rating changes must be zero.
8 Lemus and Marshall (2021) show that in online dynamic innovation procurement, performance feedback through a real-time public leaderboard on average 

improves competition outcomes.
9 Klumpp et al. (2019) study sequential Blotto games with a majoritarian objective. They find that the history-independence result can extend to their setting with 

two individual contestants.
10 Typical functions include maximum or minimum member performance, additively separable (possibly nonlinear) function, Cobb-Douglas function, and constant-
3

elasticity-of-substitution production function.
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𝑁 disjoint battlefields. A player on team 𝑖 ∈ {𝐴, 𝐵} is indexed by 𝑖(𝑡) if he is assigned to battle 𝑡, where 𝑡 ∈ and  ≜ {1, 2, ..., 𝑁}
denote the set of all battles. In each component battle 𝑡, two matched players simultaneously exert their efforts, 𝑥𝐴(𝑡) and 𝑥𝐵(𝑡). Player 
𝑖(𝑡)’s effort entry 𝑥𝑖(𝑡) incurs a constant marginal cost 𝑐𝑖(𝑡) > 0, which is public information. We assume that component battles are 
carried out completely successively. As we consider a complete-information contest game, the solution concept is sub-game perfect 
equilibrium.

Given 𝑥𝐴(𝑡) and 𝑥𝐵(𝑡), player 𝑖(𝑡) wins the battle 𝑡 with probability 𝑝𝑖(𝑡)(𝑥𝐴(𝑡), 𝑥𝐵(𝑡)) such that 𝑝𝐴(𝑡)(𝑥𝐴(𝑡), 𝑥𝐵(𝑡)) +𝑝𝐵(𝑡)(𝑥𝐴(𝑡), 𝑥𝐵(𝑡)) = 1. 
As in Fu et al. (2015), we assume that the winning probability is homogeneous of degree zero in players’ efforts, allowing for various 
contest technologies.

Assumption 1. ∀𝑥𝐴(𝑡), 𝑥𝐵(𝑡) ≥ 0, 𝜃 > 0, and 𝑡 ∈ , 𝑝𝑖(𝑡)(𝜃𝑥𝐴(𝑡), 𝜃𝑥𝐵(𝑡)) = 𝑝𝑖(𝑡)(𝑥𝐴(𝑡), 𝑥𝐵(𝑡)).

Apparently, in the generalized Tullock contest, the winning probability 𝑝𝑖(𝑡)(𝑥𝑖(𝑡), 𝑥𝑗(𝑡)) = 𝑥𝑟(𝑡)
𝑖(𝑡) ∕ 

(
𝑥𝑟(𝑡)

𝑖(𝑡) + 𝑥𝑟(𝑡)
𝑗(𝑡)

)
satisfies Assumption 1, 

where 𝑟(𝑡) > 0 denotes the discriminatory power of battle 𝑡.
The contest organizer has a fixed budget, which is fully divisible and normalized as 1, to reward teams. In our analysis, we 

consider the team prize to be a public good that holds equal value for all players within the team. For simplicity of analysis, we 
assume that there is no private benefit for an individual player from winning his own battle. As a result, a player can only benefit 
from his team prize. This pure public-good setup at least serves as a good starting point of the analysis, and is a common scenario in 
many real-world team contests. For instance, in team sports, contestants are primarily motivated by their team’s success. Similarly, 
in R&D race between research alliances, each research unit is mainly driven by their alliance’s overall winning prospect.

The contest organizer aims to maximize the expected total effort of players from both teams by choosing a prize allocation rule 
and fully committing to it. The prize allocation rule can be contingent on the contest outcomes—i.e., the full path of battle outcomes. 
To better illustrate, we denote the set of winning battles of the concerned team 𝑖 as subset  𝑖(∈ 2 ), ∀𝑖 ∈ {𝐴, 𝐵}. Apparently, if 
team 𝑖 wins battles  𝑖, team 𝑗 (≠ 𝑖) must win the remaining battles 𝑗 =∖ 𝑖, and there are 2𝑁 possible outcomes in total. We 
use 𝑣𝑖( 𝑖)(≥ 0) to denote the prize allocated to team 𝑖.11 Our prize allocation rule (𝑣𝐴(⋅), 𝑣𝐵(⋅)) can be path-dependent since a team’s 
prize is contingent on the full path of battle outcomes or the set of battles it wins, i.e., 𝑣𝑖(⋅) ∶ 2 → [0, 1]. Throughout the paper, we 
restrict our attention to the prize allocations that satisfy nonnegativity, monotonicity, and budget balance conditions summarized in 
the following Assumption 2.

Assumption 2. (i) Nonnegativity. 𝑣𝑖( 𝑖) ≥ 0, ∀ 𝑖, ∀𝑖 ∈ {𝐴, 𝐵}.

(ii) Monotonicity. ( 𝑖)′ ⊆  𝑖 ⟹ 𝑣𝑖(( 𝑖)′) ≤ 𝑣𝑖( 𝑖), ∀𝑖 ∈ {𝐴, 𝐵}.

(iii) Budget Balance. 𝑣𝑖( 𝑖) + 𝑣𝑗 ( 𝑗 ) = 1, ∀ 𝑖 and  𝑗 =∖ 𝑖, 𝑖, 𝑗 ∈ {𝐴, 𝐵}, 𝑖 ≠ 𝑗.

The nonnegativity condition requires that the prizes are nonnegative, and the monotonicity condition requires that additional 
victory is never detrimental. The budget balance condition requires that the prize budget is always exhausted, which plays a crucial 
role in our analysis. Due to the budget balance condition, team 𝐵’s prize can be fully determined by team 𝐴’s prize. Therefore, to 
search for the effort-maximizing prize allocation rule, it suffices to focus on team 𝐴’s prize allocation rule 𝑣𝐴(⋅). More importantly, 
as will be revealed later, the budget balance condition implies that in our setting, all battles can be viewed as independent draws 
with fixed winning chances. This observation dramatically simplifies our analysis.

We say that a prize allocation rule (𝑣𝐴(⋅), 𝑣𝐵(⋅)) is path-independent if and only if a team’s prize is solely contingent on the 
number of battles each team wins, i.e., 𝑣𝑖(⋅) ∶ 𝐍 → [0, 1]. Let 𝑘𝐴 be the number of winning battles of team 𝐴. Therefore, 𝑣𝐴(𝐴)
and 𝑣𝐴(𝑘𝐴) denote the prize to team 𝐴 for path-dependent and path-independent allocation rules, respectively. We will study how 
to design the effort-maximizing prize allocation rule subject to Assumption 2. The solution concept applied in this paper is subgame 
perfect Nash equilibrium.

Our model can be interpreted in an alternative way. When the prize budget is indivisible, the prize to team 𝑖 can be interpreted 
as team 𝑖’s winning chance of the whole prize. Assumption 2(𝑖) (nonnegativity) automatically holds as winning probabilities cannot 
be negative. Assumption 2(𝑖𝑖) (monotonicity) means that winning an additional battle does not decrease the team’s winning chance. 
Assumption 2(𝑖𝑖𝑖) means that there must be a winner.

Designer’s objective function

Fu et al. (2015) establish independence results in majoritarian multi-battle team contests. As a consequence, players’ winning 
probabilities can be viewed as independent draws. This result extends to the settings with any number of battles and any feasible 
prize rule satisfying Assumption 2 whenever the contest success function is homogeneous of degree zero in the efforts. Relying on 
this generalized independence result, we are able to pin down the designer’s objective function (total expected effort) as a linear 
function of prizes. The details are as follows.

Consider a path-dependent allocation rule 𝑣𝐴(⋅) ∶ 2 → [0, 1]. The state of the contest before battle 𝑡 is summarized by a tuple 
(𝑡, 𝐴

𝑡 , 𝐵
𝑡 ), where 𝑡 = {1, 2, ⋯ , 𝑡 − 1} denotes the set of finished battles and  𝑖

𝑡 ⊆ 𝑡 the set of battles that team 𝑖 wins. Since 

11 We assume that the prize to a team under each winning outcome must be nonnegative. See Moldovanu et al. (2012), Liu et al. (2018), and Liu and Lu (2023) for 
4

analyses on negative prizes.
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𝐴
𝑡 ∪𝐵

𝑡 =𝑡 and 𝐴
𝑡 ∩𝐵

𝑡 =∅, we simply use (𝑡, 𝐴
𝑡 ) to represent the state. Denote 𝔼𝑥𝑖(𝑡)(𝐴

𝑡 ) as player 𝑖(𝑡)’s expected effort 
in battle 𝑡 when the state is (𝑡, 𝐴

𝑡 ). Therefore, the (ex-ante) expected total effort can be written as follows.

𝐓𝐄(𝑣𝐴) ≜
∑
𝑡∈

∑
𝐴

𝑡 ⊆𝑡

Pr(𝐴
𝑡 )[𝔼𝑥𝐴(𝑡)(𝐴

𝑡 ) + 𝔼𝑥𝐵(𝑡)(𝐴
𝑡 )], (1)

where Pr(𝐴
𝑡 ) is the probability that the state is (𝑡, 𝐴

𝑡 ) before battle 𝑡.
Let 𝑈𝑖

𝑡 (
𝐴
𝑡+1) denote the expected prize won by each player on team 𝑖 ∈ {𝐴, 𝐵} before battle 𝑡 + 1 that has a history 𝐴

𝑡+1, and let 
𝑉𝑡(𝐴

𝑡 ) denote player 𝐴(𝑡)’s valuation of winning current battle 𝑡 at state (𝑡, 𝐴
𝑡 ). Since each player in a team contest turns up only 

once and bears no cost in future battles, player 𝐴(𝑡)’s prize spread for battle 𝑡 with 𝐴
𝑡 is merely 𝑉𝑡(𝐴

𝑡 ) = 𝑈𝐴
𝑡 (𝐴

𝑡 ∪{𝑡}) −𝑈𝐴
𝑡 (𝐴

𝑡 ), 
and player 𝐵(𝑡)’s prize spread is merely 𝑈𝐵

𝑡 (𝐴
𝑡 ) − 𝑈𝐵

𝑡 (𝐴
𝑡 ∪ {𝑡}), as player 𝐴(𝑡) wins battle 𝑡 means that player 𝐵(𝑡) loses that 

battle.

Consider a component battle 𝑡 at state (𝑡, 𝐴
𝑡 ). It follows from the budget balance condition that 𝑈𝐵

𝑡 (𝐴
𝑡 ) = 1 − 𝑈𝐴

𝑡 (𝐴
𝑡 )

and 𝑈𝐵
𝑡 (𝐴

𝑡 ∪ {𝑡}) = 1 − 𝑈𝐴
𝑡 (𝐴

𝑡 ∪ {𝑡}), regardless of the chances of every possible 𝐴. Thus, player 𝐵(𝑡)’s prize spread equals [
1 −𝑈𝐴

𝑡 (𝐴
𝑡 )
]
−
[
1 −𝑈𝐴

𝑡 (𝐴
𝑡 ∪ {𝑡})

]
, which coincides with 𝑉𝑡(𝐴

𝑡 ). Therefore, two matched players have the same valuation of 
winning the current battle 𝑡. In our context, we refer to this common valuation of winning as the effective prize spread of battle 𝑡. This 
result, as in Observation 1 and Theorem 1 of Fu et al. (2015), leads to the following property.

Property 1. Given players’ marginal effort costs and the contest technology, for all 𝑡, 𝐴
𝑡 , there exist scalars 𝛼𝑡 and 𝑝𝐴(𝑡) that depend solely 

on 𝑐𝐴(𝑡), 𝑐𝐵(𝑡) and the contest technology in battle 𝑡, such that at equilibrium (i) 𝔼𝑥𝐴(𝑡)(𝐴
𝑡 ) +𝔼𝑥𝐵(𝑡)(𝐴

𝑡 ) = 𝛼𝑡𝑉𝑡(𝐴
𝑡 ); (ii) player 𝐴(𝑡) wins 

battle 𝑡 with probability 𝑝𝐴(𝑡).

Property 1(i) and (ii) talk about two different terms in Equation (1): [𝔼𝑥𝐴(𝑡)(𝐴
𝑡 ) +𝔼𝑥𝐵(𝑡)(𝐴

𝑡 )] and Pr(𝐴
𝑡 ), respectively.12 Due 

to Assumption 1, Property 1(i) means that the sum of players’ expected efforts in each battle must be proportional to the prize spread. 
Moreover, the ratio 𝛼𝑡 is dependent on 𝑡 while invariant to the states. When the effective prize spread is positive, Property 1(ii) follows 
directly from the history independence result by Fu et al. (2015). When the effective prize spread is zero, i.e., 𝑉𝑡(𝐴

𝑡 ) = 0, we call 
such a battle 𝑡|𝐴

𝑡 a trivial battle wherein players simply make zero effort. In the following lemma, we establish that it is without 
loss of generality to assume that player 𝐴(𝑡) wins with probability 𝑝𝐴(𝑡), even for trivial battles.

Lemma 1 (Trivial battle). If battle 𝑡|𝐴
𝑡 is trivial, the expected total effort remains the same when the winning probabilities of the players in 

battle 𝑡 are reset as (𝑝𝐴(𝑡), 1 − 𝑝𝐴(𝑡)).

Proof. See the Appendix. □

With Property 1(ii), ex-ante battle outcomes can be treated as independent lotteries, which inherits the merit of history inde-

pendence in the literature. By direct calculation, the probability that 𝐴
𝑡 occurs is Pr(𝐴

𝑡 ) =
∏

𝑗∈𝐴
𝑡

𝑝𝐴(𝑗)
∏

𝑗∈𝑡⧵𝐴
𝑡
(1 − 𝑝𝐴(𝑗)). 

Therefore, the expected total effort in Equation (1) can be written as 𝐓𝐄(𝑣𝐴) =
∑

𝑡∈ 𝛼𝑡𝐏𝐒𝑡(𝑣𝐴), where

𝐏𝐒𝑡(𝑣𝐴) =
∑

𝐴
𝑡 ⊆𝑡

⎧⎪⎨⎪⎩
∏

𝑗∈𝐴
𝑡

𝑝𝐴(𝑗)
∏

𝑗∈𝑡⧵𝐴
𝑡

(1 − 𝑝𝐴(𝑗))
⎫⎪⎬⎪⎭𝑉𝑡(𝐴

𝑡 )

denotes the (ex-ante) expected effective prize spread of battle 𝑡.
We then analyze the contest dynamics to pin down the analytical form of 𝑉𝑡(𝐴

𝑡 ) in 𝐏𝐒𝑡(𝑣𝐴). For this purpose, we track players’ 
incentives by computing 𝑈𝐴

𝑡 backward. At the end of the contest, i.e., 𝑡 = 𝑁 , the continuation value coincides with the prize, 
which yields the boundary condition for 𝑈𝐴: 𝑈𝐴

𝑁
(𝐴

𝑁+1) = 𝑣𝐴(𝐴
𝑁+1). Given an arbitrary battle 𝑡 at state (𝑡, 𝐴

𝑡 ), if player 
𝐴(𝑡) wins, the contest reaches state (𝑡+1, 𝐴

𝑡 ∪ {𝑡}) and the continuation value for team 𝐴’s players becomes 𝑈𝐴
𝑡 (𝐴

𝑡 ∪ {𝑡}); 
if player 𝐴(𝑡) loses, the contest reaches state (𝑡+1, 𝐴

𝑡 ) and the continuation value correspondingly becomes 𝑈𝐴
𝑡 (𝐴

𝑡 ). Since 
player 𝐴(𝑡) wins battle 𝑡 with probability 𝑝𝐴 regardless of the state (Property 1(ii)), we obtain the recursive definition for 𝑈𝐴: 
𝑈𝐴

𝑡−1(
𝐴
𝑡 ) = 𝑝𝐴(𝑡)𝑈

𝐴
𝑡 (𝐴

𝑡 ∪ {𝑡}) +
(
1 − 𝑝𝐴(𝑡)

)
𝑈𝐴

𝑡 (𝐴
𝑡 ). Fig. 1 illustrates the dynamics of the team contests.

Based on the boundary condition and recursive definition, we derive the analytical formulas of 𝑈𝐴
𝑡−1(

𝐴
𝑡 ) and 𝑉𝑡(𝐴

𝑡 ) in terms 
of prizes {𝑣𝐴(𝐴)}𝐴∈2 and further characterize 𝐓𝐄(𝑣𝐴) in terms of {𝑣𝐴(𝐴)}𝐴∈2 . The result is summarized as follows.

Lemma 2 (Objective function). The expected total effort over all 𝑁 battles, 𝐓𝐄(𝑣𝐴), is a linear function of 𝑣𝐴(𝐴), ∀𝐴 ⊂  . Specifically,

𝐓𝐄(𝑣𝐴) =
∑
𝑡∈

𝛼𝑡𝐏𝐒𝑡(𝑣𝐴), (2)
5

12 For the generalized Tullock contests, 𝑝𝐴(𝑡) and 𝛼𝑡 are explicitly provided in Section 4.2.
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Fig. 1. Dynamics of the team contest.

where

𝐏𝐒𝑡(𝑣𝐴) =
∑

𝐴⊆

⎡⎢⎢⎢⎣(−1)
𝟏(𝑡∉𝐴)

⎧⎪⎨⎪⎩
∏

𝑗∈𝐴,𝑗≠𝑡

𝑝𝐴(𝑗)
∏

𝑗∉𝐴,𝑗≠𝑡

(1 − 𝑝𝐴(𝑗))
⎫⎪⎬⎪⎭𝑣𝐴(𝐴)

⎤⎥⎥⎥⎦ . (3)

Proof. See the Appendix. □

Lemma 2 pins down the contest designer’s objective as a linear function of {𝑣𝐴(𝐴)}𝐴∈2 . Notice that 𝐏𝐒𝑡(𝑣𝐴) =∑
𝐴⊆∖{𝑡}

{∏
𝑗∈𝐴 𝑝𝐴(𝑗)

∏
𝑗∉𝐴 (1 − 𝑝𝐴(𝑗))

[
𝑣𝐴(𝐴 ∪ {𝑡}) − 𝑣𝐴(𝐴)

]}
. In this alternative expression, 

∏
𝑗∈𝐴 𝑝𝐴(𝑗)

∏
𝑗∉𝐴 (1 −

𝑝𝐴(𝑗)) represents team 𝐴’s probability of winning 𝐴 out of  ⧵ {𝑡}, and 𝑣𝐴(𝐴 ∪ {𝑡}) − 𝑣𝐴(𝐴) then denotes the effective 
prize spread of battle 𝑡. Therefore, 𝐏𝐒𝑡(𝑣𝐴) is the (ex-ante) expected effective prize spread of battle 𝑡 given that the outcomes of all 
battles except 𝑡 were drawn independently.

3. Optimal prize design

Based on the designer’s objective function of total effort maximization, we first provide a fundamental property of the optimal 
prize rule in Section 3.1, which rules out the possibility of split prizes between teams. Then we proceed to characterize the optimal 
prize design in Section 3.2. In Section 3.3, we further show that our analysis can be extended to solving a problem of total weighted 
effort maximization, in which the organizer values the battle efforts differently. Lastly, we examine an important special case of 
homogeneous battles in Section 3.4.

3.1. Simplifying the problem

To formally characterize the optimal rule, we first demonstrate that at optimum each prize must be either 0 or 1, i.e., a team is 
awarded either the whole prize or nothing. This rules out the possibility of partial or split prizes. Based on this observation, we can 
therefore define the winner and loser of the whole contest: A team is called the winner if and only if it acquires the entire prize.

Lemma 3 (Win or lose). With full-fledged heterogeneity, there must exist an optimal prize allocation rule 𝑣𝐴(⋅) such that 𝑣𝐴(𝐴) ∈ {0, 1}.

Proof. See the Appendix. □

A sketch proof is provided below, which consists of two steps. First, we argue that the set of all 𝑣𝐴 functions, denoted by 𝐴, is 
convex and 𝐓𝐄(𝑣𝐴) is linear in 𝑣𝐴 within 𝐴. The convexity of 𝐴 follows directly from three conditions in Assumption 2, which are 
all linear. The linearity of 𝐓𝐄(𝑣𝐴) in 𝑣𝐴 is a consequence of history independence result as well as Equation (3). By the fundamental 
theorem of linear programming, the maximum effort level can always be attained at the vertices of 𝐴 .13

Second, we show that every 𝑣𝐴 that belongs to the vertices of 𝐴 must satisfy that 𝑣𝐴(𝐴) ∈ {0, 1}. Since the number of vertices 
is finite (no larger than 22𝑁

), the optimal prize allocation rule can always be attained by vertices of 𝐴. In other words, an allocation 
with split prizes can be decomposed into a convex combination of vertex rules that exclude these prizes.

Lemma 3 facilitates our search for the optimal prize rules tremendously since it reduces the number of candidates from infinite 
to finite, which makes enumeration possible. Based on the result, we can therefore define the winner and loser of the team contest: 
A team is called the winner if it acquires the entire prize.

13 Fundamental theorem of linear programming says that a linear objective function f defined over a polygonal convex set attains a maximum (or minimum) value 
6

at a corner point of the set.
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3.2. Optimal design

Due to full-fledged heterogeneity, it is not straightforward to tell which team is stronger as a whole, since a team may contain 
both weaker and stronger players, relative to their opponents in the rival team. Nevertheless, we propose a measurement of team 
strength that aggregates all relevant information to determine which team is stronger and by how much. This step plays a key role 
in characterizing and interpreting the optimal rule.

We first introduce the definition of player strength, which is the building block to evaluate a team’s strength.

Definition 1 (Player strength). Player 𝑖(𝑡)’s strength is defined as 𝑠𝑖(𝑡) ≜
𝛼𝑡

1−𝑝𝑖(𝑡)
, ∀𝑖, 𝑡.

Recall that 𝛼𝑡 denotes the ratio of the total effort in battle 𝑡 to the effective prize spread of battle 𝑡 (see Property 1(i)). Intuitively, 
𝛼𝑡 should increase with the players’ total strength in battle 𝑡, and decreases with their degree of asymmetry. As a result, players’ total 
strength should increase with 𝛼𝑡 and their degree of asymmetry. Since 𝑝𝐴(𝑡) + 𝑝𝐵(𝑡) = 1, then 1

𝑝𝐴(𝑡)𝑝𝐵(𝑡)
naturally measures the degree 

of asymmetry across the two players. It follows that

𝑠𝑡 =
𝛼𝑡

𝑝𝐴(𝑡)𝑝𝐵(𝑡)

becomes a natural measure for the total strengths of two players in battle 𝑡. We can split this total strength between the two players 
according to their winning probabilities. Then, we have the player 𝑖(𝑡)’s strength 𝑠𝑖(𝑡) = 𝑝𝑖(𝑡)𝑠𝑡 =

𝛼𝑡

1−𝑝𝑖(𝑡)
.

By summing up all players’ strengths in a team, we can further define the team strength for each team.

Definition 2 (Team strength). Team 𝑖’s team strength is defined as 𝑆𝑖 ≜
∑

𝑡∈ 𝑠𝑖(𝑡), ∀𝑖.

Note that 𝑆𝑖 is solely determined by the model primitives 
{
𝑐𝐴(𝑡), 𝑐𝐵(𝑡), 𝑟(𝑡)

}𝑁

𝑡=1. Relying on this definition, the team with higher 
team strength is the stronger team. Nevertheless, 𝑆𝑖 > 𝑆𝑗 does not imply that 𝑝𝑖(𝑡) > 𝑝𝑗(𝑡) holds uniformly across all battles. The defi-

nition of team strength thus converts players’ strengths within a team into a single-dimensional measure. Without loss of generality, 
we assume in the subsequent analysis that team 𝐴 is the stronger team, i.e., 𝑆𝐴 ≥ 𝑆𝐵 .

We next introduce a class of winning rules called majority-score rule with a headstart: each battle is assigned a team-invariant 
score, a headstart score is assigned to the weaker team as favoritism, the team collecting higher total scores from its winning battles 
wins the entire prize.

Definition 3 (Majority-score rule with a headstart). In a multi-battle team contest, each battle is assigned a score 𝑤𝑡. Let 𝑤𝐴(𝐴) =∑
𝑡∈𝐴 𝑤𝑡 and 𝑤𝐵(𝐵) =

∑
𝑡∈𝐵 𝑤𝑡 denote the sum of scores won by teams 𝐴 and 𝐵, respectively. 𝐻 ≥ 0 denotes the headstart 

score allocated to the weaker team 𝐵. Team 𝐴 (the stronger team) collects the whole prize budget if 𝑤𝐴(𝐴) > 𝑤𝐵(𝐵) +𝐻 ; and 
team 𝐵 collects the whole prize budget if 𝑤𝐴(𝐴) < 𝑤𝐵(𝐵) +𝐻 ; when 𝑤𝐴(𝐴) = 𝑤𝐵(𝐵) +𝐻 , the tie can be broken arbitrarily.

This class of winning rule is commonly observed in practice. If we take the US presidential election as a multi-battle contest, 
then the winner of a state collects scores equal to the electoral votes, and the candidate or party with a higher total score wins the 
election. In addition, headstart is well documented in the literature, and it is often included in the design.14 In score contests, the 
presence of a headstart in the form of initial scores is quite common. One example of such headstarts is the practice of partisan 
gerrymandering.15

In the following main theorem of the paper, we show that the optimal design must fall in the class of the majority-score rules 
with a headstart; moreover, we fully pin down the optimal battle scores and the initial headstart score.

Theorem 1 (Optimality of majority-score rule with a headstart). With full-fledged heterogeneity, the optimal allocation rule is a majority-

score rule with a headstart, in which 𝑤𝑡 = 𝑠𝑡, ∀𝑡 and 𝐻 = 𝑆𝐴 −𝑆𝐵 .

Proof. We provide a sketch of proof here. Details are relegated to the Appendix.

For every prize allocation rule satisfying 𝑣𝐴(𝐴) ∈ {0, 1} (see Lemma 3), we can always find a minimum winning outcome 𝐴 such 

that 𝑣𝐴(𝐴) = 1 and 𝑣𝐴(𝐴) = 0 for all 𝐴 ⫋𝐴. Similarly, we can define the maximum losing outcome 
𝐴

such that 𝑣𝐴(
𝐴
) = 0

and 𝑣𝐴(𝐴) = 1 for all 𝐴 ⫌
𝐴

.

We then show that changing from 𝑣𝐴(𝐴) = 1 to 𝑣𝐴(𝐴) = 0, which does not violate any constraint, would increase the total 
effort level if 𝑤𝐴(𝐴) < 𝑤𝐵(𝐴) +𝐻 . Hence, the optimal design must have 𝑤𝐴(𝐴) ≥ 𝑤𝐵(𝐴) +𝐻 for all minimum winning out-

14 Heating up an unbalanced competition in asymmetric contests through headstart is widely studied in the literature. See Li and Yu (2012); Pastine and Pastine 
(2012); and Seel and Wasser (2014), among others.
7

15 Gerrymandering helps secure wins in some battles for the ruling party, which can be regarded as providing it a headstart.
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comes. This suffices to show that 𝑤𝐴(𝐴) ≥ 𝑤𝐵(𝐴) +𝐻 holds for all 𝐴 such that 𝑣𝐴(𝐴) = 1. Similarly, 𝑤𝐴(𝐴) ≤ 𝑤𝐵(𝐴) +𝐻
holds for all 𝐴 such that 𝑣𝐴(𝐴) = 0. □

Equivalently, the optimal prizes are 𝑣𝐴(𝐴) =
⎧⎪⎨⎪⎩

1, if 𝑤𝐴(𝐴) > 𝑆𝐴,
0, if 𝑤𝐴(𝐴) < 𝑆𝐴,

0 or 1, if 𝑤𝐴(𝐴) = 𝑆𝐴.
and 𝑣𝐵(𝐵) = 1 −𝑣𝐴(𝐴), since 𝑆𝐴+𝑆𝐵 =

∑
𝑡∈ 𝑤𝑡

by definition. In other words, the team strengths 𝑆𝐴 and 𝑆𝐵 can be viewed as the respective winning thresholds for two teams. Since 
𝑠𝑖(𝑡) = 𝑝𝑖(𝑡)𝑤𝑡 (by construction) is the expected battle score obtained by player 𝑖(𝑡), 𝑆𝑖 ≜

∑
𝑡∈ 𝑠𝑖(𝑡) is simply the expected team score

obtained by all members on team 𝑖.

Remark 1. 𝑆𝑖, 𝑖 ∈ {𝐴, 𝐵} equals team 𝑖’s winning threshold score, which in turn coincides with its expected team score.

Remark 1 provides an interesting alternative interpretation of the optimal prize allocation rule: the optimal prize rule actually 
rewards the entire prize to the team that outperforms its expected score, i.e. its expected performance.

The optimal rule incentivizes effort supply through two instruments: the score of each battle 𝑤𝑡 and the winning threshold for 
each team 𝑆𝑖 (in terms of unadjusted total scores). To see how the optimal rule in Theorem 1 reacts to the heterogeneity within 
a battle through the two instruments, consider an unbalanced battle 𝑡 in which player 𝑖(𝑡) is stronger than his opponent 𝑗(𝑡), i.e., 
𝑐𝑖(𝑡) < 𝑐𝑗(𝑡) or 𝑝𝑖(𝑡) > 𝑝𝑗(𝑡). For simplicity, in the following discussion, we focus on battle structure changes (costs and technology) that 
only affect 𝛼𝑡 or 𝑝𝑖(𝑡).

16 When 𝛼𝑡 increases, the effort becomes more effective in determining the outcome, and the optimal prize rule 
raises score 𝑤𝑡 in battle 𝑡 because a higher score should be set to provide a higher incentive in such a battle. In addition, 𝑤𝑡 should 
always increase whenever battle 𝑡 becomes more unbalanced. In particular, when 𝑝𝑖(𝑡) increases, the degree of imbalance measured by 
1∕(𝑝𝐴(𝑡)𝑝𝐵(𝑡)) also increases and the optimal prize rule assigns a greater score 𝑤𝑡 to battle 𝑡. Moreover, the higher 𝑝𝑖(𝑡) is, the higher 
player strength 𝑠𝑖(𝑡) and also the higher winning threshold 𝑆𝑖 would be. In the meanwhile, since 𝑝𝑗(𝑡) = 1 − 𝑝𝑖(𝑡), the weaker player’s 
strength 𝑠𝑗(𝑡) and the winning threshold 𝑆𝑗 both decrease. Our result reveals that headstart is set to counterbalance the asymmetry 
between two teams: if team 𝑖 is the stronger team (i.e., team 𝑗 is the weaker team), headstart to the weaker team 𝑗 should increase 
with 𝑝𝑖(𝑡); if team 𝑖 is the weaker team and headstart to the weaker team 𝑖 should instead decrease with 𝑝𝑖(𝑡).

3.3. Total weighted effort maximization

In contests involving teams, battles can occur in various dimensions, areas, or activities. The organizer may assign different 
values to the efforts put forth in these battles. For instance, different stages of a multi-stage innovation tournament between research 
alliances could be rated differently by organizers. Similarly, sequential sports matches might receive varying levels of attention 
from audiences, leading organizers to evaluate efforts along the matches differently. Additionally, an organizer could place different 
weights on the efforts of different teams in the same battle. To account for these considerations, this subsection expands Theorem 1 by 
introducing a more comprehensive framework that accommodates varying weights assigned to different players’ efforts in contests.

Consider the situation in which the contest organizer wishes to maximize the total weighted efforts across battles, i.e., ∑
𝑡∈ (𝑑𝐴(𝑡)𝑥𝐴(𝑡) + 𝑑𝐵(𝑡)𝑥𝐵(𝑡)), where 𝑑𝑖(𝑡) > 0 denotes the effort weight of player 𝑖(𝑡). If 𝑑𝐴(𝑡) = 𝑑𝐵(𝑡), we denote this common weight 

by 𝑑𝑡, which is the effort weight of battle 𝑡. As pointed out by Fu et al. (2015), Assumption 1 implies that equilibrium strategies 
are homogeneous of degree one in the effective prize spread. Let 𝔼𝑥𝐴(𝑡)(𝐴

𝑡 ) = 𝛼𝐴(𝑡)𝑉𝑡(𝐴
𝑡 ) and 𝔼𝑥𝐵(𝑡)(𝐴

𝑡 ) = 𝛼𝐵(𝑡)𝑉𝑡(𝐴
𝑡 ). Hence, 

𝛼𝑡 = 𝛼𝐴(𝑡) + 𝛼𝐵(𝑡).
To investigate the optimal design with effort weights, we first formulate the objective function faced by the contest organizer 

as 
∑

𝑡∈ 𝑧𝑡𝐏𝐒𝑡(𝑣𝐴), where 𝑧𝑡 ≜ 𝑑𝐴(𝑡)𝛼𝐴(𝑡) + 𝑑𝐵(𝑡)𝛼𝐵(𝑡). By replacing 𝛼𝑡 by 𝑧𝑡 in Equation (2), we obtain the weighted total effort. In 
particular, when the effort exerted by two players in the same battle is evaluated equally (i.e., 𝑧𝑡 = 𝑑𝑡𝛼𝑡), the weighted total effort 
can be obtained by multiplying 𝛼𝑡 by 𝑑𝑡 in Equation (2). In this case, the effort weight plays a similar role as 𝛼𝑡 (i.e. the ratio of total 
effort to effective prize spread) in determining the optimal design.

With full heterogeneity in effort evaluation, we simply replace 𝛼𝑡 with 𝑧𝑡 (i.e., 𝑑𝑡𝛼𝑡 or 𝑑𝐴(𝑡)𝛼𝐴(𝑡) + 𝑑𝐵(𝑡)𝛼𝐵(𝑡)) and apply the 
aforementioned procedure to derive the optimal design in Theorem 1. More precisely, the strength of 𝑖(𝑡) is now given by 𝑠W

𝑖(𝑡) ≜
𝑧𝑡

1−𝑝𝑖(𝑡)
, 

and the team strength is still defined as 𝑆W
𝑖 =

∑
𝑡∈ 𝑠W

𝑖(𝑡). The score assigned to battle 𝑡 is now 𝑤W
𝑡 ≜

𝑧𝑡

𝑝𝐴(𝑡)𝑝𝐵(𝑡)
, which increases with the 

effort weight. By inserting these updates into 𝑤𝐴, 𝑤𝐵 , and 𝐻 , Theorem 1 can easily accommodate effort heterogeneity across battles. 
Specifically, 𝐻 =

∑
𝑡∈ [𝑠W

𝐴(𝑡) − 𝑠W
𝐵(𝑡)] =

∑
𝑡∈

(𝑝𝐴(𝑡)−𝑝𝐵(𝑡))𝑧𝑡

𝑝𝐴(𝑡)𝑝𝐵(𝑡)
; thus, as 𝑑𝐴(𝑡) or 𝑑𝐵(𝑡) grows, 𝐻 adjusts to give an additional advantage 

to the team that includes the weaker player in battle 𝑡. Relying on the analysis of Section 3.2, we restate our result in the following 
proposition.

16 For example, given the contest technology, we can proportionally reduce 𝑐𝐴(𝑡) and 𝑐𝐵(𝑡) to increase 𝛼𝑡 while fixing 𝑝𝐴(𝑡) . Meanwhile, appropriately decreasing 𝑐𝑖(𝑡)
8

and increasing 𝑐𝑗(𝑡) can increase 𝑝𝑖(𝑡) without changing 𝛼𝑡 . Please refer to Section 4.2 for more details.
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Proposition 1. With full-fledged heterogeneity, consider a total weighted effort maximization problem with weight 𝑑𝑖(𝑡) > 0 for player 𝑖(𝑡), 
the optimal design can be obtained by simply replacing 𝛼𝑡 with 𝑧𝑡 in the Section 3.2. In particular, the score assigned to battle 𝑡 increases with 
its own weights (𝑑𝐴(𝑡), 𝑑𝐵(𝑡) or 𝑑𝑡) and does not depend on other battles’ weights.

We would like to emphasize that the generalization described above can be used to optimize the sum of the higher effort in each 
battle, provided that equilibrium is in pure strategies. This formalization well captures R&D scenarios where the designer aims to 
maximize the higher effort in each battle. To see that, we simply let (𝑑𝐴(𝑡), 𝑑𝐵(𝑡)) = (1, 0) when 𝛼𝐴

𝑡 ≥ 𝛼𝐵
𝑡 and (𝑑𝐴(𝑡), 𝑑𝐵(𝑡)) = (0, 1) when 

𝛼𝐴
𝑡 < 𝛼𝐵

𝑡 .17

3.4. Homogeneous battles

In this subsection, we consider a prominent special case where the contest technology is uniform across all battles and players on 
each team are homogeneous, while the two competing teams can be asymmetric in terms of players’ marginal effort costs. Without 
loss of generality, we assume that team 𝐴 is stronger than team 𝐵—i.e., team-𝐴 players have a lower marginal cost of effort denoted 
by 𝑐𝐴 ∈ (0, 1]—while we normalize team-𝐵 players’ marginal effort cost as 𝑐𝐵 = 1. This setting allows us to concentrate on the 
asymmetry between rival teams.

With homogeneous battles, the number of winning battles is a sufficient statistic to determine the winning team. Formally, we can 
show that the expected total effort resulting from any path-dependent prize allocation rule can be duplicated by a path-independent 
allocation rule.18 Therefore, providing a headstart in the form of initial wins is a simple way to balance two counterparties, as is 
seen in Asian handicap betting.19 Such kind of majority rule is widely used in multi-battle contests such as tennis, volleyball, and 
snooker. We propose this winning rule in the following definition.

Definition 4 (Majority rule with a headstart). In a majority rule with a headstart, team 𝐴 will be allocated the entire prize if it wins 
at least 𝐾𝑆 (>

𝑁
2 ) battles; otherwise, the entire prize is allocated to team 𝐵. Equivalently, the weaker team is given a headstart in the 

form of 2𝐾𝑆 −𝑁 − 1 initial wins, and the entire prize is awarded to the team with the higher number of wins.

The above rule simply gives the weaker team an additive headstart with size 2𝐾𝑆 − 𝑁 − 1.20 Intuitively, the contest organizer 
levels the playing field by offering a headstart to the weaker. In particular, a majority rule with a headstart degenerates into the 
conventional majority rule if no headstart is given and battles are of odd length.

When battles are homogeneous, we simply use 𝛼 and 𝑝𝐴, where 𝛼𝑡 = 𝛼 and 𝑝𝐴(𝑡) = 𝑝𝐴 for all 𝑡. Using the notations, the score of 
each battle equals 𝑤𝑡 =

𝛼
𝑝𝐴(1−𝑝𝐴)

, which is same across battles, and the threshold for team 𝐴 is 𝑆𝐴 = 𝑁𝛼
1−𝑝𝐴

. By applying Theorem 1, 

𝑤𝐴(𝐴) > (≤)𝑆𝐴 if and only if 𝛼
𝑝𝐴(1−𝑝𝐴)

|𝐴| > (≤) 𝑁𝛼
1−𝑝𝐴

, i.e., |𝐴| > (≤)𝑝𝐴𝑁 . Then we can present the optimal prize allocation rule 
in the following proposition.

Proposition 2 (Optimality of majority rule with a headstart). With homogeneous battles, the optimal allocation rule is a majority rule with 
a headstart, in which the headstart (in terms of initial wins) is 𝐻̆ = 2𝐾𝑠 −𝑁 − 1, where 𝐾𝑆 = ⌊𝑝𝐴𝑁⌋+ 1.

Proposition 2 shows the optimality of the path-independent rule and says that the 𝐾𝑆 -th (resp. (𝑁 −𝐾𝑆 +1)-th) win is critical for 
team 𝐴 (resp. team 𝐵) in terms of the number of actual winning battles. Since 𝐾𝑆 ≥ 𝑁 −𝐾𝑆 + 1, the majority rule with a headstart 
favors the weaker team, which in turn stimulates the stronger team.

4. Properties, extensions, and implications

In this section, we first provide extra properties of our optimal design in Section 4.1, Section 4.2, and Section 4.3. Following that, 
Section 4.4 provides three extensions to the contest designer’s optimization problem. Finally, we discuss our main implications in 
Section 4.5.

4.1. Implementation through Elo rating

We have established that the optimal design is a majority-score rule with a headstart. In the following, we implement the optimal 
design using Elo rating. Elo rating is widely adopted by many renowned sports associations, including FIFA and FIDE (World Chess 

17 Majority-score rule with a headstart is optimal even for mixed strategies. Equilibrium strategies are homogeneous of degree one in the prize spread, meaning that 
a change in the prize spread scales the equilibrium strategies by the same factor. As a result, the higher effort in each battle is also scaled by this factor.
18 According to Equation (3), one can easily derive that the coefficient of 𝑣𝐴(𝐴) in the objective function is determined only by the number of winning battles, 

rather than the full path of battle wins.
19 Asian handicap betting is a form of betting on sports in which the stronger team is handicapped so that it must win by more sets or matches in a multi-battle 

contest to win a bet. It uses a handicap system to give one team an advantage over the other, thus making the odds more even.
20 If team 𝐴 wins at least 𝐾𝑆 battles and team 𝐵 wins at most 𝑁 −𝐾𝑆 battles, then team 𝐵 gains no more than 𝐾𝑆 − 1 wins after counting in the headstart; if team 

𝐴 wins at most 𝐾𝑆 − 1 battles and team 𝐵 wins at least 𝑁 − 𝐾𝑆 + 1 battles, then team 𝐵 gains at least 𝐾𝑆 scores after counting in the additive headstart. In either 
9

case, tie never occurs.
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Federation), to rate participants in bilateral games. Elo rating points are relative measures (rather than absolute measures) of the 
players’ strengths within the rating pool.

The key procedure of an Elo rating system is the rating update process. To see how it works, consider player 𝑥 after match 𝑡 has 
been played, the change in his rating points Δ𝑥 is given by

Δ𝑥 =𝕎𝑡(𝑅𝑥 −ℙ𝑥), (4)

where 𝕎𝑡 is the weight assigned to battle 𝑡 to measure the importance of the battle, 𝑅𝑥 ∈ {0, 1} is the outcome of the match from 
the perspective of player 𝑥 (1 means a victory, and 0 means a loss), and ℙ𝑥 is the expected winning probability of player 𝑥.

An Elo rating system has three features: zero-sum, favoritism, and martingale. First, rating points are transferred from the loser 
to the winner. Second, a weaker player collects more points than a stronger player does through a victory. Third, the expected total 
change in points of the two players must be zero for each match.21

We next show how to implement our optimal design through Elo rating. Consider a battle 𝑡 in the team contest, with 𝑤𝑡, 𝑝𝐴(𝑡) and 
𝑝𝐵(𝑡) defined as before in Section 3. To apply the rating update formula Equation (4), let 𝕎𝑡 = 𝑤𝑡, ℙ𝐴(𝑡) = 𝑝𝐴(𝑡) and ℙ𝐵(𝑡) = 𝑝𝐵(𝑡). If 
player 𝐴(𝑡) wins battle 𝑡, the changes in the two players’ rating points are

(Δ𝐴(𝑡),Δ𝐵(𝑡)) =
(
𝑤𝑡(1 − 𝑝𝐴(𝑡)),𝑤𝑡(0 − 𝑝𝐵(𝑡))

)
= (𝑠𝐵(𝑡),−𝑠𝐵(𝑡)) = (𝑤𝑡,0) − (𝑠𝐴(𝑡), 𝑠𝐵(𝑡)).

Otherwise, player 𝐵(𝑡) wins the battle, and the changes in the points are

(Δ𝐴(𝑡),Δ𝐵(𝑡)) =
(
𝑤𝑡(0 − 𝑝𝐴(𝑡)),𝑤𝑡(1 − 𝑝𝐵(𝑡))

)
= (−𝑠𝐴(𝑡), 𝑠𝐴(𝑡)) = (0,𝑤𝑡) − (𝑠𝐴(𝑡), 𝑠𝐵(𝑡)).

Apparently, the changes in points Δ𝐴(𝑡) and Δ𝐵(𝑡) are the additional scores, relative to the expected battle scores 𝑠𝐴(𝑡) and 𝑠𝐵(𝑡), 
earned by players 𝐴(𝑡) and 𝐵(𝑡), respectively. Section 3.2 establishes that the optimal rule rewards the entire prize to the team 
collecting a sufficient amount of scores that exceed its expected team score.22 Equivalently, the optimal rule grants the entire prize 
purse to the team if its change in rating points is positive in the Elo system, as formulated in Theorem 2. Recall 𝑅𝑖(𝑡) denotes player 
𝑖(𝑡)’s winning outcome.

Theorem 2 (Implementation through Elo rating system). With full-fledged heterogeneity, we define the change in player 𝑖(𝑡)’s Elo rating 
points as Δ𝑖(𝑡) = 𝑤𝑡(𝑅𝑖(𝑡) − 𝑝𝑖(𝑡)) and the change in team 𝑖’s Elo rating points as Δ𝑖 ≜

∑
𝑡∈ Δ𝑖(𝑡). The optimal prize allocation rule rewards 

the entire prize to team 𝑖 if and only if Δ𝑖 > 0.

The Elo scoring system illustrates an alternative way to put our optimal majority-score rule with a headstart into work in com-

petitive environments. It indicates that our optimal prize rule could be easily implemented in reality.

4.2. Comparative statics

To study how battle characteristics, including contest technology and cost parameters, affect optimal design, we consider the 
family of generalized Tullock contests. The analytical formulas for 𝛼𝑡 and 𝑝𝐴(𝑡) are derived from Lemma 1 in Feng and Lu (2018). Let 
𝑟̂(𝑧) ∈ (1, 2) represent the unique solution to 𝑟 = 1 + 𝑧𝑟 with 𝑧 ∈ (0, 1]. If 𝑐𝐴(𝑡) ≥ 𝑐𝐵(𝑡),

𝑝𝐴(𝑡) =
⎧⎪⎨⎪⎩

𝑐𝑟(𝑡)
𝐵(𝑡)∕

(
𝑐𝑟(𝑡)
𝐴(𝑡) + 𝑐𝑟(𝑡)

𝐵(𝑡)

)
, if 𝑟(𝑡) ≤ 𝑟̂

(
𝑐𝐵(𝑡)∕𝑐𝐴(𝑡)

)
,

(𝑟(𝑡) − 1)1−1∕𝑟(𝑡) 𝑐𝐵(𝑡)∕
(
𝑟(𝑡)𝑐𝐴(𝑡)

)
, if 𝑟(𝑡) ∈ (𝑟̂

(
𝑐𝐵(𝑡)∕𝑐𝐴(𝑡)

)
,2],

𝑐𝐵(𝑡)∕
(
2𝑐𝐴(𝑡)

)
, if 𝑟(𝑡) > 2.

and

𝛼𝑡 =

⎧⎪⎪⎨⎪⎪⎩
𝑟(𝑡)𝑐𝑟(𝑡)−1

𝐴(𝑡) 𝑐𝑟(𝑡)−1
𝐵(𝑡)

(
𝑐𝐴(𝑡) + 𝑐𝐵(𝑡)

)(
𝑐𝑟(𝑡)
𝐴(𝑡) + 𝑐𝑟(𝑡)

𝐵(𝑡)

)−2
, if 𝑟(𝑡) ≤ 𝑟̂

(
𝑐𝐵(𝑡)∕𝑐𝐴(𝑡)

)
,

(𝑟(𝑡) − 1)1−1∕𝑟(𝑡) (𝑐𝐴(𝑡) + 𝑐𝐵(𝑡)
)
∕
(
𝑟(𝑡)𝑐2

𝐴(𝑡)

)
, if 𝑟(𝑡) ∈ (𝑟̂

(
𝑐𝐵(𝑡)∕𝑐𝐴(𝑡)

)
,2],(

𝑐𝐴(𝑡) + 𝑐𝐵(𝑡)
)
∕
(
2𝑐2

𝐴(𝑡)

)
, if 𝑟(𝑡) > 2.

The case of 𝑐𝐴(𝑡) < 𝑐𝐵(𝑡) is analogous to the case of 𝑐𝐴(𝑡) ≥ 𝑐𝐵(𝑡).

4.2.1. Full-fledged heterogeneity

In this part, we allow full heterogeneity across players and battles to investigate how battle characteristics impact the optimal 
design. Note that 𝑠𝐴(𝑡), 𝑠𝐵(𝑡) and 𝑤𝑡 only vary with 𝑡 through the parameters 𝑐𝐴(𝑡), 𝑐𝐵(𝑡), 𝑟(𝑡). While, the headstart score 𝐻 =

∑
𝑡∈ Δ𝑠𝑡

21 Consider, for example, two players 𝑥 and 𝑦, competing in a single match with importance 𝕎𝑡 = 32. The expected winning probabilities of 𝑥 and 𝑦 are 80% and 
20%, respectively. If 𝑥 wins the match, he will obtain Δ𝑥 = 32 × (1 −0.8) = 6.4 rating points and 𝑦 will receive Δ𝑦 = 32 × (0 −0.2) =−6.4. Otherwise, 𝑦 wins the match 
and extracts 32 ×(1 −0.2) = 25.6 points from 𝑥. The expected change in points for player 𝑥 is 6.4 ×0.8 +(−25.6) ×0.2 = 0, and for player 𝑦 is (−6.4) ×0.8 +25.6 ×0.2 = 0.
10

22 Please refer to the alternative interpretation of the optimal prize allocation rule following Remark 1.
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with Δ𝑠𝑡 ≜ 𝑠𝐴(𝑡) − 𝑠𝐵(𝑡), depends on 𝑠𝐴(𝑡) and 𝑠𝐵(𝑡) in each battle 𝑡. As a consequence, the structural parameters of battle 𝑡 affect the 
headstart score 𝐻 through Δ𝑠𝑡.

We first summarize the impact of marginal costs 𝑐𝐴(𝑡), 𝑐𝐵(𝑡) in Proposition 3 when 𝑟(𝑡) = 1, which means that battle 𝑡 is a standard 
lottery contest.

Proposition 3. When 𝑟(𝑡) = 1, the battle score 𝑤𝑡 decreases with 𝑐𝐴(𝑡) and 𝑐𝐵(𝑡); the headstart score 𝐻 (to team B) decreases with 𝑐𝐴(𝑡) but 
increases with 𝑐𝐵(𝑡).

Proof. See the Appendix. □

According to Proposition 3, when a player in a battle becomes stronger as his marginal effort cost decreases, the importance of 
the concerned battle to the entire contest, measured by 𝑤𝑡, must increase. This echoes our early insight that the battle score should 
increase with battle productivity (𝛼𝑡). Moreover, if a player on team 𝐴 (the stronger team) grows stronger or a player on team 𝐵
(the weaker team) becomes weaker, the headstart score (to team 𝐵) should increase to further favor team 𝐵, which conforms with 
the favoritism argument.

Analogously, we establish the results on the impact of discriminatory power 𝑟(𝑡), which are summarized in Proposition 4.

Proposition 4. When 𝑟(𝑡) ≤ 2, the battle score 𝑤𝑡 increases with 𝑟(𝑡); the headstart score 𝐻 (to the weaker team 𝐵) increases with 𝑟(𝑡) if 
𝑐𝐴(𝑡) < 𝑐𝐵(𝑡) and decreases with 𝑟(𝑡) if 𝑐𝐴(𝑡) > 𝑐𝐵(𝑡). When 𝑟(𝑡) > 2, both the battle score and the headstart score remain unchanged.

Proof. See the Appendix. □

When a component battle is relatively noisy (i.e., lower 𝑟(𝑡)), an underdog player in the concerned battle becomes weaker as 
the discriminatory power 𝑟(𝑡) increases. By the favoritism argument, the headstart score should adjust to further favor the team 
containing this underdog player. In contrast, when the contest is sufficiently discriminatory, both the battle score and the headstart 
score are independent of the discriminatory power, since the equilibrium effort and winning probabilities remain constant in this 
case.

4.2.2. Homogeneous battles

With homogeneous battles, players within each team are homogeneous and all battles share the same discriminatory power 
𝑟 ∈ (0, +∞]. All players in team 𝑖 ∈ {𝐴, 𝐵} have marginal effort cost 𝑐𝑖. In this case, player 𝐴(𝑡) wins with a battle-irrelevant 
probability 𝑝𝐴:

𝑝𝐴 =
⎧⎪⎨⎪⎩

1∕
(
1 + 𝑐𝑟

𝐴

)
, if 𝑟 ≤ 𝑟̂(𝑐𝐴),

1 − (𝑟− 1)1−1∕𝑟 𝑐𝐴∕𝑟, if 𝑟 ∈ (𝑟̂(𝑐𝐴),2],
1 − 𝑐𝐴∕2, if 𝑟 > 2.

(5)

Section 3.4 shows that the optimal allocation rule intensifies the competition by compensating the underdog team and thus 
disciplining the favorite team. Specifically, the contest designer mitigates the asymmetry between the teams by awarding the weaker 
team a headstart to heat up the competition. The following question thus arises: How does the level of headstart respond as the two 
teams become more uneven?

Recall that Proposition 2 states that the minimum winning requirement for team 𝐴 is 𝐾𝑆 = ⌊𝑝𝐴𝑁⌋+ 1. Clearly, ⌊𝑝𝐴𝑁⌋ (weakly) 
increases with winning probability 𝑝𝐴, so does 𝐾𝑆 .

Proposition 5. In the optimal rule (i.e., majority rule with a headstart), the minimum number of winning battles 𝐾𝑆 for the stronger team 
𝐴 to win the contest (weakly) increases with 𝑝𝐴. In terms of model primitives, 𝐾𝑆 (weakly) increases with 𝑟 but (weakly) decreases with 𝑐𝐴.

Proposition 5 demonstrates that when 𝑝𝐴 increases, a higher 𝐾𝑆 should be set to induce more effort. Recall that the contest 
organizer uses the majority rule with a headstart with 𝐾𝑆 to favor the weaker team 𝐵, in order to balance the contest between two 
asymmetric teams. When the disparity in capabilities of the two teams (measured by 𝑝𝐴) increases, more favoritism should be offered 
to the weaker team to balance the contest.

Recall that 𝑝𝐴 is determined by the marginal effort costs of the two teams and the discriminatory power of Tullock contests, 
whenever a battle is not trivial (see Equation (5)). Note that 𝑝𝐴 decreases with 𝑐𝐴 and (weakly) increases with 𝑟. When the two 
teams become more asymmetric (i.e., a lower 𝑐𝐴) or the contest becomes discriminatory (i.e., a higher 𝑟), Proposition 5 implies that 
a higher 𝐾𝑆 should be set to induce more effort.

4.3. Majority rule and unanimous rule

4.3.1. Full-fledged heterogeneity

The best-of-𝑁 rule (the simple majority rule), is widely adopted in practice due to simplicity and fairness. Proposition 6 will 
11

provide the condition for a majority rule to be optimal. This analysis offers a theoretical justification for this popular contest rule.
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Table 1

The simple majority rule is optimal.

𝑐𝐴(𝑡) 𝑐𝐵(𝑡) 𝑝𝐴(𝑡) 𝑝𝐵(𝑡) 𝛼𝑡 𝑠𝐴(𝑡) 𝑠𝐵(𝑡) 𝑤𝑡

Battle 1 1 4 0.8 0.2 0.2 1 0.25 1.25
Battle 2 4 1 0.2 0.8 0.2 0.25 1 1.25
Battle 3 2 2 0.5 0.5 0.25 0.5 0.5 1

Proposition 6. With full-fledged heterogeneity, when the number of battles is odd, the simple majority rule is optimal if and only if scores 
assigned to all battles are sufficiently close (i.e., 

∑(𝑁+1)∕2
𝑡=1 𝑤(𝑡) ≥

∑𝑁
𝑡=(𝑁+3)∕2 𝑤(𝑡)), and the difference in team strengths is sufficiently low 

(i.e., 𝐻 ≤
∑(𝑁+1)∕2

𝑡=1 𝑤(𝑡) −
∑𝑁

𝑡=(𝑁+3)∕2 𝑤(𝑡)), where 𝑤(𝑡) denotes the 𝑡-th minimum score among all battles.

The condition 
∑(𝑁+1)∕2

𝑡=1 𝑤(𝑡) ≥
∑𝑁

𝑡=(𝑁+3)∕2 𝑤(𝑡) is equivalent to 𝑁+1
𝑁

𝑤̄L ≥ 𝑤̄ ≥ 𝑁−1
𝑁

𝑤̄H, where 𝑤̄L = 2
𝑁+1

∑(𝑁+1)∕2
𝑡=1 𝑤(𝑡) is the av-

erage score in those less weighted battles, 𝑤̄H = 2
𝑁−1

∑𝑁
𝑡=(𝑁+3)∕2 𝑤(𝑡) is the average score in those heavier weighted battles, and 

𝑤̄ = 1
𝑁

∑𝑁
𝑡=1 𝑤(𝑡) is the average score in all battles. This condition requires that the scores assigned to battles are sufficiently close.

According to Proposition 6, the optimality of the simple majority rule rests on whether scores are relatively symmetric across 
battles. Note that a lopsided contest and a balanced contest can share very similar battle scores, and the simple majority rule could 
be optimal even when the winning probabilities vary dramatically across matches.

Example. Consider a 3-battle team contest and each battle is modeled as a lottery contest (i.e., Tullock contest with discriminatory 
power 𝑟 = 1). Marginal costs and other parameters are summarized in Table 1. We can validate the conditions in Proposition 6 and 
pin down the optimal prize allocation rule is the simple majority rule.23 Note that in this example team 𝐴 dominates the first battle, 
team 𝐵 prevails in the second, and both teams are evenly matched in the third battle.

We next turn to the unanimous rule that requires the stronger team (team 𝐴) to win all battles to gain the entire prize. We borrow 
the word “unanimous” from the voting literature to define the prize allocation rule that demands all battles to reach a “consensus” 
on their outcomes. In our context, the unanimous rule means that a stronger team receives nothing if it losses an arbitrary battle. 
Alternatively, the weaker team (team 𝐵) only needs to win one battle to win the whole prize. We have the following result on the 
sub-optimality of unanimous rule.

Proposition 7. With full-fledged heterogeneity, the unanimous rule can never be optimal if the weaker team dominates strictly more than 
one battle.

Proof. See the Appendix. □

4.3.2. Homogeneous battles

We further study the comparative statics when battles are homogeneous. In this case, players are homogeneous within each team 
and discriminatory powers across battles remain the same, while the two teams can be asymmetric.

When two teams are close to symmetry, i.e., 𝑝𝐴 is close to 0.5, the minimum winning requirement in the majority rule with a 
headstart equals 𝐾𝑆 =

⌊
𝑁
2

⌋
+1 =

⌊
𝑁
2 + 1

⌋
. Hence, the conventional best-of-𝑁 allocation rule is optimal when the number of battles 

is odd, as summarized in Proposition 8.

Proposition 8. With homogeneous battles, when two teams are close to symmetry, i.e., 𝑝𝐴 ∈ [ 12 , 𝑁+1
2𝑁 ), the minimum winning requirement 

𝐾𝑆 =
⌊

𝑁
2 + 1

⌋
. As a result, if the number of battles is odd, the simple majority rule is optimal.

In a 3-battle (5-battle) team contest, best-of-three (best-of-five) is optimal when 𝑝𝐴 is lower than 66.67% (60%). If the winning 
probability of the stronger team in each battle exceeds 66.67% (60%) with 3 (5) battles, a simple majority rule is no longer optimal.

We next turn to the unanimous rule. Intuitively, the unanimous rule extremely favors the weaker team. From the perspective of 
optimal favoritism, the unanimous rule would be optimal if and only if 𝑝𝐴 is sufficiently close to 1, i.e., when the two teams are 
sufficiently asymmetric. This is confirmed by the following proposition.

Proposition 9. With homogeneous battles, when two teams have a large disparity in strength, i.e., 𝑝𝐴 ∈ (𝑁−1
𝑁

, 1), the minimum winning 
requirement 𝐾𝑆 = 𝑁 , i.e., the unanimous rule is optimal.

Example. Consider a 3-battle team contest and each battle is modeled as a standard lottery contest. We plot the expected total 
efforts that result from the simple majority rule (MR, the lower curve) and the majority rule with optimal headstart (MRH, the higher 
curve) in Fig. 2 by varying 𝑐𝐴 while fixing 𝑐𝐵 = 1.
12

23 The first condition is satisfied since 1 + 1.25 > 1.25, and the second condition is fulfilled because the two teams have the same team strengths equaling 1.75.
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Fig. 2. Comparisons.

By Proposition 8, when the two teams are close to symmetry, the optimal allocation rule converges to the simple majority rule. 
In Fig. 2, the two curves merge and coincide when 𝑐𝐴 is sufficiently close to 𝑐𝐵 = 1. On the contrary, when the two teams become 
sufficiently asymmetric, the unanimous rule becomes optimal and outperforms the simple majority rule. Note that with the simple 
majority rule, the total effort does not change monotonically when 𝑐𝐴 increases. However, under the optimal design, the total effort 
always increases when team 𝐴 gets stronger. Clearly, leveling the playing field significantly enhances effort supply when the teams 
get more asymmetric.

4.4. Extensions

To check the robustness of the insights from Section 3 and gain new insights in different settings, we explore a number of 
extensions, including maximizing the effort of the winning team, permitting negative prizes, and relaxing budget balance constraints. 
These modifications result in a breakdown of the linearity of the organizer’s problem and render the linear programming method 
ineffective. Due to the complexity of the non-linearity issue, we use numerical simulations to analyze 2-battle or 3-battle team 
contests with homogeneous battles in different extensions. Moreover, we assume each battle is a standard lottery contest and fix 
𝑐𝐵 = 1. In general, our simulations show that even for homogeneous battles, path-dependent prizes or partial prizes may arise at the 
optimum in these extensions.

4.4.1. Maximizing the winning team’s effort

According to the history independence result, the design of 𝑣𝐴 does not disrupt Pr(𝐴) for all 𝐴 ∈ 2 even after adjusting for 
trivial battles. As a consequence, the (ex-ante) expected winner’s effort can be written as

WE(𝑣𝐴) ≜
∑

𝐴⊆

Pr(𝐴)

[
𝑣𝐴(𝐴)

∑
𝑡∈

𝔼𝑥𝐴(𝑡)(𝐴 ∩𝑡) +
(
1 − 𝑣𝐴(𝐴)

) ∑
𝑡∈

𝔼𝑥𝐵(𝑡)(𝐴 ∩𝑡)

]
.

Here, 𝑣𝐴(𝐴) 
∑

𝑡∈ 𝔼𝑥𝐴(𝑡)(𝐴 ∩𝑡) +
(
1 − 𝑣𝐴(𝐴)

)∑
𝑡∈ 𝔼𝑥𝐵(𝑡)(𝐴 ∩𝑡) is the expected winner’s effort given a history 𝐴, 

where 𝑣𝐴(𝐴) is interpreted as the winning odd for team 𝐴 to win an indivisible prize of value 1. It is straightforward to check that 
WE(𝑣𝐴) is a quadratic function of 𝑣𝐴(𝐴). Thus, we can no longer expect that the optimal prize allocation involves no split prizes 
in general, since the designer’s problem is not a linear program anymore.24

Consider a 3-battle team contest with each battle as a standard lottery and 𝑐𝐵 = 1. Our simulations show that the winner remains 
the same in five out of eight possible paths as 𝑝𝐴 or 𝑐𝐴 varies in the optimal design. More specifically, 𝑣𝐴(∅) = 𝑣𝐴({1}) = 𝑣𝐴({2}) =
𝑣𝐴({3}) = 0 and 𝑣𝐴({1, 2, 3}) = 1. These results say that team 𝐴 never wins the contest if it wins no more than one battle, and it 
always wins the contest if it wins all battles.

24 If contest technologies are not homogeneous of degree zero, the total effort is also a non-linear function of the prizes. One can reasonably expect that the findings 
in this subsection would apply similarly. For example, consider two homogeneous battles, each with a ratio form success function 𝑝𝑖(𝑡)(𝑥𝐴(𝑡), 𝑥𝐵(𝑡)) =

𝑓 (𝑥𝑖(𝑡) )
𝑓 (𝑥𝐴(𝑡) )+𝑓 (𝑥𝐵(𝑡) )

where 𝑓 (𝑥) = 𝑥 + 0.2. All players’ marginal costs are 1. We find that the optimal prize rule is to assign the entire prize to an arbitrarily fixed battle. This rule is 
13

path-dependent.
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Fig. 3. Optimal path-dependent rule.

Fig. 4. Improvement of path-dependent rule.

Moreover, when 𝑐𝐴 is above roughly 0.475, the simple majority rule is optimal, and when 𝑐𝐴 is below roughly 0.345, the 
unanimous rule favoring team 𝐵 is optimal. These rules are path-independent and involve no split prizes. In contrast, when 𝑐𝐴 is in 
between the above two cutoffs, the optimal rule is path-dependent. In Fig. 3, we plot the values of 𝑣𝐴({1, 2}), 𝑣𝐴({1, 3}), 𝑣𝐴({2, 3}) for 
the optimal rule while allowing path dependence as 𝑐𝐴 changes within the interval [0.33, 0.5]. Clearly, split prizes are often involved 
at optimum as 𝑣𝐴({1, 2}) typically falls in (0, 1).

Fig. 4 plots the improvement of the optimal path-dependent rule compared with the optimal path-independent rule. Within the 
class of path-independent rules, when 𝑐𝐴 is above roughly 0.425 (see the dashed vertical line in Fig. 4), the simple majority rule is 
optimal, and when 𝑐𝐴 is below 0.425, the unanimous rule favoring team 𝐵 is optimal. We thus must have 𝑣𝐴(0) = 𝑣𝐴(1) = 0, and 
𝑣𝐴(2) is described in Fig. 4.

Fig. 4 reveals that, at the cutoff (roughly 0.425) of 𝑐𝐴 at which the optimal path-independent rule switches from the simple 
majority rule to the unanimous rule, the optimal path-dependent rule outperforms the optimal-path-independent rule to a great 
extent (see the peak of the curve in Fig. 4).

When the two teams are sufficiently symmetrical (i.e., 𝑐𝐴 gets high enough), the optimal path-independent allocation rule is 
the simple majority rule; when the two teams are sufficiently asymmetric (i.e., 𝑐𝐴 gets low enough), the unanimous rule would 
be optimal and outperforms the simple majority rule. Hence, the primary insight of this paper preserves even when the objective 
changes to maximizing the winner’s effort: The optimal design levels the playing field in an asymmetric team contest.

Nevertheless, our exercise reveals that, in general, even with homogeneous battles, maximizing the winning team’s effort would 
14

necessarily involve path-dependent prizes and split prizes, which does not occur for total effort maximization.
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Table 2

Three equivalent rules (𝑐𝐴 = 0.5).

𝑣𝐴(0) 𝑣𝐴(1) 𝑣𝐴(2) 𝑣𝐴(3)

Rule 1 -3.25 -3.25 1.8125 1.8125

Rule 2 -19 1.25 1.25 1.25

Rule 3 -1 -1 -1 4.0625

Fig. 5. Negative prizes are beneficial.

4.4.2. Relaxing the nonnegativity condition

The prohibition of negative prizes permits the elimination of individual rationality constraints from the optimization problem. 
However, when negative prizes are allowed, we need to ensure that players are willing to participate in the team contest by taking 
into account their individual rationality conditions.25 That is,

𝔼{𝑢𝑖(𝑡)(𝑣𝐴)} ≥ 0,∀𝑖 ∈ {𝐴,𝐵}, 𝑡 ∈ , (IR)

where 𝔼𝑢𝑖(𝑡)(𝑣𝐴) ≜ 𝔼𝐴𝑣𝑖(𝐴) − 𝑐𝑖(𝑡)𝛼𝑖(𝑡)𝐏𝐒𝑡(𝑣𝐴) denotes the (ex-ante) expected payoff of player 𝑖(𝑡) given 𝑣𝐴. Note that 𝔼𝐴𝑣𝑖(𝐴)
represents the expected gain from winning the prizes, and 𝑐𝑖(𝑡)[𝛼𝑖(𝑡)𝐏𝐒𝑡(𝑣𝐴)] is the expected effort cost in the battle 𝑡.

With full-fledged heterogeneity, solving the optimal design is technically difficult since Lemma 3 (optimality of 0 or 1 prizes) fails. 
In particular, it is challenging to characterize the implications of vertex rules when negative prizes are allowed. With homogeneous

battles, any path-dependent prize allocation rule can be duplicated by a path-independent one. Given a specific number of winning 
battles, the constructed path-independent rule averages the prizes in a path-dependent rule for winning the concerned number of 
battles. Therefore, there always exists an optimal rule being path-independent.

More importantly, the optimal path-independent rule may not be unique and the optimized total effort level must be 𝑁𝛼
𝑐𝐴𝛼𝐴+𝑐𝐵𝛼𝐵

, 
where 𝛼𝑖 represents the ratio of effort to the prize spread for a player on team 𝑖 ∈ {𝐴, 𝐵} and 𝛼 = 𝛼𝐴 + 𝛼𝐵 .26

We next conduct a series of numerical simulations to further illustrate the above points. In a 3-battle team contest with homoge-

neous standard lottery battles and 𝑐𝐵 = 1, the optimal path-independent rule is typically not unique and the resultant highest total 
effort level induced by the optimal rule is 3𝑐𝐴+3

2𝑐𝐴
. In particular, if 𝑐𝐴 = 0.5, then the three prize allocation rules shown in Table 2 yield 

the same level of highest expected total effort.

Moreover, we can always construct an optimal path-independent rule with 𝑣𝐴(0) = 𝑣𝐴(1) and 𝑣𝐴(2) = 𝑣𝐴(3) for an arbitrary 𝑐𝐴 ∈
(0, 1]. Adopting this class of rules, Fig. 5 shows that (i) the optimal rule always favors the weaker team since 𝑣𝐴(3) < 1 −𝑣𝐴(0) = 𝑣𝐵(3)
for all 𝑐𝐴 < 1; and (ii) negative prizes are always beneficial as revealed by the highest curve of effort ratio.27 Allowing penalties in 
team contests makes the effort level at least 4 times the original level. The lower bound 4 is achieved if and only if 𝑐𝐴 = 1, where 
𝑣𝐴(0) = −1.5 and 𝑣𝐴(3) = 2.5.

25 We assume that each player has to decide whether to participate at the start of the contest.
26 We first realize that individual rationality constraints must be binding at optimum. Namely, 𝔼𝐴 𝑣𝑖(𝐴) = 𝑐𝑖𝛼𝑖𝐏𝐒(𝑣𝐴), 𝑖 ∈ {𝐴, 𝐵}, where 𝐏𝐒(𝑣𝐴) denotes the prize 

spread for every battle. Hence, the optimal rule satisfies that 𝔼𝐴 𝑣𝐴 (𝐴 )
1−𝔼𝐴 𝑣𝐴 (𝐴 )

= 𝑐𝐴𝛼𝐴

𝑐𝐵 𝛼𝐵

, which indicates 𝔼𝐴 𝑣𝐴(𝐴) = 𝑐𝐴𝛼𝐴

𝑐𝐴𝛼𝐴+𝑐𝐵 𝛼𝐵

. Therefore, we have 𝐏𝐒(𝑣𝐴) = 1
𝑐𝐴𝛼𝐴+𝑐𝐵 𝛼𝐵

and 𝐓𝐄(𝑣𝐴) = 𝑁𝛼

𝑐𝐴𝛼𝐴+𝑐𝐵 𝛼𝐵

. Hence, 𝑣𝐴 is optimal as long as it satisfies (i) 𝔼𝐴 𝑣𝐴(𝐴) = 𝑐𝐴𝛼𝐴

𝑐𝐴𝛼𝐴+𝑐𝐵 𝛼𝐵

, (ii) 𝐏𝐒(𝑣𝐴) = 1
𝑐𝐴𝛼𝐴+𝑐𝐵 𝛼𝐵

, (iii) monotonicity conditions, and (iv) 
budget-balance conditions. Typically, the above conditions do not pin down a unique solution for 𝑁 + 1 unknowns.
15

27 For an easier exposition, we drop the cases wherein 𝑐𝐴 ∈ (0, 0.3] to avoid the extremes. When 𝑐𝐴 = 0.1, 𝑣𝐴(0) = −35.3; when 𝑐𝐴 = 0.01, 𝑣𝐴(0) = −2600.3.
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Fig. 6. Optimal path-(in)dependent rules.

4.4.3. Relaxing the budget balance condition

For tractability, we consider a 2-battle team contest with homogeneous battles. In this case, there are four possible out-

comes, 𝐴 ∈ {∅, {1}, {2}, {1, 2}} and 𝐵 = {1, 2} ⧵ 𝐴. The prize allocation rule should specify eight values, 𝑣𝑖(∅), 𝑣𝑖({1}),
𝑣𝑖({2}), 𝑣𝑖({1, 2}), 𝑖 ∈ {𝐴, 𝐵}. We still keep nonnegativity and monotonicity conditions in Assumption 2. However, the budget con-

ditions now become:

𝑣𝑖( 𝑖) + 𝑣𝑗 ( 𝑗 ) ≤ 1,∀ 𝑖, 𝑗 =∖ 𝑖, 𝑖, 𝑗 ∈ {𝐴,𝐵}, 𝑖 ≠ 𝑗.

Let 𝑝𝑖(𝑡)(𝑣̃𝐴, 𝑣̃𝐵) denote the winning probability of player 𝑖(𝑡) in the battle 𝑡 when the effective prize spreads for player 𝐴(𝑡) and 
𝐵(𝑡) are 𝑣̃𝐴 and 𝑣̃𝐵 . Let 𝐓𝐄𝑡(𝑣̃𝐴, 𝑣̃𝐵) denote the total effort exerted in battle 𝑡. If team 𝐴 wins the first battle, the effective prize spreads 
of player 𝐴(2) and 𝐵(2) are 𝑉𝐴(2)({1}) ≜ 𝑣𝐴({1, 2}) −𝑣𝐴({1}) and 𝑉𝐵(2)(∅) ≜ 𝑣𝐵({2}) −𝑣𝐵(∅). The expected total effort equals 𝐓𝐄𝐴

2 ≜

𝐓𝐄2(𝑉𝐴(2)({1}), 𝑉𝐵(2)(∅)). If team 𝐵 wins the first battle, the effective prize spreads of player 𝐴(2) and 𝐵(2) are 𝑉𝐴(2)(∅) ≜ 𝑣𝐴({2}) −
𝑣𝐴({∅}) and 𝑉𝐵(2)({1}) ≜ 𝑣𝐵({1, 2}) − 𝑣𝐵({1}), respectively. The expected total effort equals 𝐓𝐄𝐵

2 ≜ 𝐓𝐄2(𝑉𝐴(2)(∅), 𝑉𝐵(2)({1})).
Consider the first battle. If 𝐴(1) wins, his expected prize would be

𝔼(A(1) wins) ≜ 𝑣𝐴({1,2})𝑝𝐴(2)(𝑉𝐴(2)({1}), 𝑉𝐵(2)(∅)) + 𝑣𝐴({1})𝑝𝐵(2)(𝑉𝐴(2)({1}), 𝑉𝐵(2)(∅)).

If 𝐴(1) loses, his expected prize would be

𝔼(A(1) loses) ≜ 𝑣𝐴({2})𝑝𝐴(2)(𝑉𝐴(2)(∅), 𝑉𝐵(2)({1})) + 𝑣𝐴(∅)𝑝𝐵(2)(𝑉𝐴(2)(∅), 𝑉𝐵(2)({1})).

The effective prize spread of player 𝐴(1) thus equals 𝑉𝐴(1) ≜ 𝔼(A(1) wins) − 𝔼(A(1) loses). The effective prize spread 𝑉𝐵(1) of player 
𝐵(1) can be defined analogously. Hence, the expected total effort exerted in the first battle is 𝐓𝐄1 ≜ 𝐓𝐄1(𝑉𝐴(1), 𝑉𝐵(1)). Therefore, the 
designer’s objective function can be expressed as

𝐓𝐄(𝑣𝐴, 𝑣𝐵) ≜ 𝐓𝐄1 + 𝑝𝐴(1)(𝑉𝐴(1), 𝑉𝐵(1))𝐓𝐄𝐴
2 + 𝑝𝐵(1)(𝑉𝐴(1), 𝑉𝐵(1))𝐓𝐄𝐵

2 .

In the following numerical exercise, we maintain the assumption that each battle is a standard lottery contest, fix 𝑐𝐵 = 1, and 
allow 𝑐𝐴 to vary within the interval [0.5, 1].

With the budget balance condition, by Proposition 2, we can show that the following rule is optimal regardless of 𝑐𝐴 across all 
path-dependent rules: 𝑣𝐴(∅) = 𝑣𝐴({1}) = 𝑣𝐴({2}) = 0, 𝑣𝐴({1, 2}) = 1, and 𝑣𝐵(𝐵) = 1 − 𝑣𝐴({1, 2} ⧵𝐵).

If we drop the budget balance condition, we find that 𝑣𝐴(∅) = 𝑣𝐵(∅) = 0 and 𝑣𝐴({1, 2}) = 𝑣𝐵({1, 2}) = 1 always hold for the 
optimal path-dependent rule; and 𝑣𝐴(0) = 𝑣𝐵(0) = 0, 𝑣𝐴(2) = 𝑣𝐵(2) = 1 always hold for the optimal path-independent rule. Moreover, 
we have 𝑣𝑖({1}) = 0 in the optimal path-dependent rule for 𝑖 = 𝐴, 𝐵. It remains to determine the values of 𝑣𝐴({2}), 𝑣𝐵({2}) in 
the optimal path-dependent rule and 𝑣𝐴(1), 𝑣𝐵(1) in the optimal path-independent rule. Based on numerical solutions, Fig. 6 plots 
𝑣𝐴({2}), 𝑣𝐵({2}) and 𝑣𝐴(1), 𝑣𝐵(1) as 𝑐𝐴 varies.28 Both the optimal path-independent and path-dependent cases involve partial 
prizes, and they are generally different, which means that the optimal rule is in general path-dependent even when the battles are 
homogeneous. This result further implies that the budget must be slack in general at optimum.

Fig. 6 shows that the optimal rule is no longer path-independent. The optimal design of the competition only awards a positive 
prize to the team that wins the second battle. If this team also wins the first battle, it receives the full prize. However, if it loses 
the first battle, it still has a chance to win a slightly lower prize by winning the second battle. In that sense, the first battle can 
be interpreted as a warm-up for the second battle that determines the winner. As a result, the first two battles play different roles 

√
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28 When 𝑐𝐴 = 1, 𝑣𝐴(1) = 𝑣𝐵 (1) = 0.25 and 𝑣𝐴({2}) = 𝑣𝐵 ({2}) = 2 − 1.
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Fig. 7. Comparisons.

in prize allocations. However, this novel channel to incentivize competitors no longer works when the budget balance condition is 
binding.

We are now able to draw the total efforts under the three different rules mentioned above as 𝑐𝐴 varies, in Fig. 7. The effort supply 
under the optimal path-dependent rule without budget balance is weakly higher than that under the optimal path-independent rule 
without budget balance, which in turn is weakly higher than that under the optimal path-dependent rule with budget balance. This 
shows the benefit to the contest organizer of dropping the budget balance condition. It further confirms that the optimal design 
must be path-dependent when dropping the budget balance condition, even when the battles are homogeneous. As the two teams 
become more evenly matched, dropping the budget balance condition becomes increasingly beneficial. In particular, even when 
the two teams are completely symmetric (i.e., 𝑐𝐴 = 1), relaxing the budget balance condition benefits the contest designer. When 
𝑐𝐴 ≤

√
2 − 1, the budget balance condition is binding for optimal designs under all three scenarios. Therefore, three curves in Fig. 7

coincide.

4.5. Implications

In various contexts of multi-battle team contests such as sports, R&D competitions, and political campaigns, designers are con-

cerned with the aggregate productive effort of all members from both teams. Our results shed light on the effort-maximizing prize 
design of these contests.

Our study demonstrates that when two teams are more or less evenly matched, the simple majority rule is optimal. This rule is 
pervasive in top-notch sports contests with team titles wherein prizes are usually awarded following the best-of-5 rule, such as the 
Davis Cup and the Billie Jean King Cup in tennis; the Thomas Cup, the Uber Cup, and the Sudirman Cup in badminton; and the 
Swaythling Cup and the Corbillon Cup in table tennis. Since the contending teams In these competitions are often of similar strength, 
our results provide a theoretical rationale to support the use of simple majority rules in these real-world team competitions.

Our research also provides insight into the design of legislative elections, where candidates from opposing parties vie for seats 
in each constituency. Typically, a party winning a simple majority of seats can form a government or set political agendas in 
the legislature.29 Despite its advantages, this prevailing election rule may not be fair due to the incumbency advantage, which 
presumably generates deleterious effects on social welfare.30 For example, an incumbency advantage could deter both parties from 
exerting consistent efforts that are essential for maintaining a well-functioning political system. This situation can be worsened, since 
the dominant party in power can further utilize gerrymandering to secure victories, which even gives an advantage to the stronger 
team in legislative elections. Our analysis suggests that a headstart should be granted to the challenging party (typically the weaker 
party) to elicit a more productive effort supply from all parties. Our analysis provides a theoretical foundation for the Independent 
Redistricting Commission (IRC) to serve its intended role of eliminating gerrymandering and promoting a more equitable political 
campaign.

In team competitions such as patent races, major grant competitions, and government procurements, competitions are held 
between research alliances. These alliances consist of member entities that specialize in different tasks, which enables the alliance to 
compete as a unified entity. For instance, in a major project of NSFC, there may be five topics designated for investigation, and two 
research alliances consisting of five universities or institutes each typically focus on its own expertise. Each member takes charge of 
one topic and competes with its counterpart from the rivaling alliance on the same task. The performance of each member on their 

29 Some empirical studies show that gaining a majority of seats in the legislature is advantageous for the ruling party. For example, Cox and Magar (1999) evaluate 
the majority status in terms of contributions from political action committees by investigating changes in party control of the House and Senate. Snyder (1989) takes 
maximizing the probability of obtaining a majority status as a political party’s objective.
30 Incumbency advantage is a commonly research topic in studies of congressional elections, see, e.g., Levitt and Wolfram (1997) and Jamie et al. (2007). Pastine 

and Pastine (2012) identify various channels through which incumbency advantages may harm social welfare. For example, the ruling party can be less productive in 
17

serving the public interest if it has a low risk of being defeated.
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assigned task, relative to their opponent, will affect the overall performance of the entire alliance. Our analysis suggests that the 
designer should take into account the diverse strengths of research alliances, which are multi-dimensional, and convert them into a 
single-dimensional strength measure of scores. In addition, the designer should utilize properly designed score-based prize allocation 
rules to favor the weaker team.

Our analysis also illustrates how the optimal design should take care of heterogeneity in productivity efficiencies across battles, 
or in contest organizer’s values of efforts generated from different battles. In R&D contests with multiple stages or dimensions, 
each component battle may exhibit varying levels of productivity, referred to as heterogeneity across component battles. Our study 
recommends that in order to maximize total R&D effort, the organizer should assign a higher score to the stage that has higher 
research productivity.

In reality, the contest designer often values players’ efforts differently across component battles. Our study suggests that the score 
assigned to a battle should be proportional to the weight that the designer places on the concerned battle’s effort. In particular, if a 
battle’s effort is more highly valued, it should be assigned a higher score, all other things being equal.

5. Concluding remarks

This paper studies the effort-maximizing prize design in team contests with an arbitrary number of pairwise battles.31 We incor-

porate full-fledged heterogeneity in our analysis, meaning that all players can be heterogeneous and contest technologies can differ 
across battles. The organizer is able to reward teams according to the full history subject to budget balance constraints. We find that 
the history independence result shown by Fu et al. (2015) still applies, i.e., the outcomes of early battles do not distort the winning 
probabilities in future battles. As a result, players’ winning odds in each battle can be viewed as independent lotteries at any state, 
which ensures that the optimization problem can be solved using linear programming techniques.

We then derive the closed-form optimal prize allocation rule, which is a majority-score rule with a headstart score for the weaker 
team. Specifically, two teams collect scores by winning component battles, and they obtain the same score if they win the same 
battle. The scores can be different across battles. The rule favors the weaker team by awarding it a headstart score, and the team that 
accumulates higher total scores wins the whole prize.

Our study reveals an interesting connection between our optimal design and Elo rating. Each team’s Elo rating change is the sum 
of Elo rating changes of its members. The sum of the two teams’ Elo ratings remains constant. Our optimal rule can be implemented 
as follows: The team with an improved Elo rating would win the competition and collect the entire prize. Instead of ranking the 
individual agents, in our paper we utilize the Elo rating method to determine the winning team by aggregating ratings over the team 
members.

Our general procedure for deriving the optimal design still works when the designer values the effort across battles or players 
differently, the designer only values the higher effort in each battle. Analogous to Fu et al. (2015), we can easily show that our 
optimal designs are fully robust to incomplete information within battles and contest temporal structures.

We have included a number of extensions to check the robustness of the insights from the main setup, and gain new insights 
in different settings. New complications would arise when we relax the budget balance condition or non-negativity of prizes, or 
consider the maximization of the winner’s effort as in Barbieri and Serena (2021). We rely on numerical exercises to investigate the 
implications of these issues in this paper. In general, even for homogeneous battles, path-dependent prizes or partial prizes may arise 
at the optimum.32
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Appendix A

This appendix covers the proofs of Lemma 1, Lemma 2, Lemma 3, Theorem 1, Proposition 3, Proposition 4, and Proposition 7.

31 Effort or performance maximization is a common goal for contest design in the literature, such as Olszewski and Siegel (2020).
32 There are alternative objectives beyond the maximization of total effort or winning team’s effort. For example, Ely et al. (2015) consider the maximization of 

suspense or surprise, which is measured by the conditional probability of outcomes in each stage. In our team contest framework, the conditional probability of an 
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outcome in a specific battle is not influenced by the prize allocation rule.
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A.1. Proof of Lemma 1

If battle 𝑡 is trivial, i.e., 𝑈𝐴
𝑡 (𝐴

𝑡 ∪ {𝑡}) = 𝑈𝐴
𝑡 (𝐴

𝑡 ), it elicits zero effort and its winning outcome is determined by the default tie-

breaking rule; hence 𝑈𝐴
𝑡−1(

𝐴
𝑡 ) = 𝑈𝐴

𝑡 (𝐴
𝑡 ∪ {𝑡}) = 𝑈𝐴

𝑡 (𝐴
𝑡 ). Therefore, the recursive definition for 𝑈𝐴, 𝑈𝐴

𝑡−1(
𝐴
𝑡 ) = 𝑝𝐴(𝑡)𝑈

𝐴
𝑡 (𝐴

𝑡 ∪
{𝑡}) +

(
1 − 𝑝𝐴(𝑡)

)
𝑈𝐴

𝑡 (𝐴
𝑡+1), holds for any 𝑝𝐴(𝑡) ∈ [0, 1].

We next show that the outcome of a trivial battle does not affect the boundary conditions, which ensures that our formula for the 
effective prize spread remains valid when trivial battles are taken into account.

Lemma A.1 (Outcome Equivalence). If battle 𝑡|𝐴
𝑡 is trivial, then for all possible sets of winning battles of team 𝐴 for the remaining battles, 

 ⊆ ∖𝑡+1, 𝑣𝐴(𝐴
𝑡 ∪ {𝑡} ∪𝑄) = 𝑣𝐴(𝐴

𝑡 ∪).

We now explain why the above result must hold. By monotonicity conditions, 𝑣𝐴(𝐴
𝑡 ∪{𝑡} ∪) ≥ 𝑣𝐴(𝐴

𝑡 ∪) for all  ⊆ ∖𝑡+1
and hence 𝑉𝑡(𝐴

𝑡 ) ≥ 0. It is worth noting that 𝑉𝑡(𝐴
𝑡 ) = 0 implies that 𝑣𝐴(𝐴

𝑡−1 ∪ {𝑡} ∪) = 𝑣𝐴(𝐴
𝑡−1 ∪), ∀ ⊆ ∖𝑡+1. In words, 

the subgames of a team contest are exactly the same, regardless of the outcome of the trivial battle. As a result, the trivial battle is 
inconsequential in determining the prize.

Since the outcome of a trivial battle does not affect the boundary conditions or recursive definitions of 𝑈𝐴, we have the following 
two remarks.

Remark A.1 (State Equivalence). If battle 𝑡|𝐴
𝑡 is trivial, for ̃𝑡 ≥ 𝑡 and  ⊆ 𝑡̃+1∖𝑡+1, (𝑡̃+1, 𝐴

𝑡 ∪ {𝑡} ∪) and (𝑡̃+1, 𝐴
𝑡 ∪) are 

equivalent states. In other words, (i) the expected prize is identical, 𝑈𝐴
𝑡̃
(𝐴

𝑡 ∪ {𝑡} ∪) = 𝑈𝐴
𝑡̃
(𝐴

𝑡 ∪); (ii) the effective prize spread 
is identical, 𝑉𝑡̃+1(𝐴

𝑡 ∪ {𝑡} ∪) = 𝑉𝑡̃+1(𝐴
𝑡 ∪).

Remark A.2 (Transition Probability Irrelevance). If battle 𝑡|𝐴
𝑡 is trivial, both the expected prize and effective prize spread for all 

battles will not change if the transition probability for these two subgames changes.

Remark A.2 illustrates the fact that if a battle is trivial, then for two decision points representing two outcomes of this trivial 
battle, the total effort generated until the contest ends does not depend on which decision point to go to. All subsequent processes 
are exactly the same for these two decision points. Starting from these two points, two subgames are identical and the expected prize 
and effective prize spread remain the same when the transition probability of these two subgames changes. As a result, we can freely 
adjust the winning probability of trivial battles.

If all battles before battle 𝑡 are nontrivial, the probability that history 𝐴
𝑡 occurs can be calculated by the multiplicative law of 

probability and hence given by 
∏

𝑗∈𝐴
𝑡

𝑝𝐴(𝑗)
∏

𝑗∈𝑡⧵𝐴
𝑡
(1 − 𝑝𝐴(𝑗)). If some of the battles are trivial, we can adjust the probabilities 

such that history 𝐴
𝑡 occurs with probability 

∏
𝑗∈𝐴

𝑡
𝑝𝐴(𝑗)

∏
𝑗∈𝑡⧵𝐴

𝑡
(1 − 𝑝𝐴(𝑗)).

A.2. Proof of Lemma 2

We first express 𝑈𝐴
𝑡 (𝐴

𝑡 ) and 𝑉 𝐴(𝐴
𝑡 ) in terms of {𝑣𝐴(𝐴)}𝐴∈2 .

(i) Determine the coefficient of 𝑣𝐴(𝐴) in 𝑈𝐴
𝑡 (𝐴

𝑡+1).
Suppose the first 𝑡 battles are finished with history 𝐴

𝑡+1. Consider an outcome 𝐴 that is possible to achieve after history 𝐴
𝑡+1, 

i.e., 𝐴 ∩𝑡+1 =𝐴
𝑡+1; it follows from the multiplicative law of probability that the coefficient of 𝑣𝐴(𝐴) in 𝑈𝐴

𝑡 (𝐴
𝑡+1) is∏

𝑗∈𝐴⧵𝐴
𝑡+1

𝑝𝐴(𝑗)
∏

𝑗∈(⧵𝑡+1)⧵(𝐴⧵𝐴
𝑡+1)

(1 − 𝑝𝐴(𝑗))

where  ⧵𝑡+1 = {𝑡 + 1, ⋯ , 𝑁} denotes the set of battles that are carried out after battle 𝑡. Then, 𝐴 ⧵𝐴
𝑡+1 represents the set of 

winning battles of team 𝐴 among  ⧵𝑡+1 while (𝐴 ⧵𝐴
𝑡+1) ⧵ (

𝐴 ⧵𝐴
𝑡+1) represents the set of losing battles of team 𝐴 among 

 ⧵𝑡+1.

Therefore, 𝑈𝐴
𝑡 (𝐴

𝑡+1) is a linear function of 𝑣𝐴(𝐴), for any 𝐴 ⊆  ,

𝑈𝐴
𝑡 (𝐴

𝑡+1) =
∑

𝐴∶𝐴∩𝑡+1=𝐴
𝑡+1

∏
𝑗∈𝐴⧵𝐴

𝑡+1

𝑝𝐴(𝑗)
∏

𝑗∈(⧵𝑡+1)⧵(𝐴⧵𝐴
𝑡+1)

(1 − 𝑝𝐴(𝑗))𝑣𝐴(𝐴).

In addition, the coefficient of 𝑣𝐴(𝐴) in 𝑈𝐴
𝑡 (𝐴

𝑡+1) is zero when 𝐴 ∩𝑡+1 ≠𝐴
𝑡+1, i.e., 𝐴 is impossible to achieve after history 

𝐴
𝑡+1.

In sum, given 𝐴
𝑡+1, if 𝐴 ∩𝑡+1 ≠𝐴

𝑡+1, the coefficient is zero; if 𝐴 ∩𝑡+1 =𝐴
𝑡+1, the coefficient of 𝑣𝐴(𝐴) in 𝑈𝐴

𝑡 (𝐴
𝑡+1)

is 
∏

𝑗∈𝐴⧵𝐴
𝑡+1

𝑝𝐴(𝑗)
∏

𝑗∈(⧵𝑡+1)⧵(𝐴⧵𝐴
𝑡+1)

(1 − 𝑝𝐴(𝑗)).

(ii) Determine the coefficient of 𝑣𝐴(𝐴) in 𝑉𝑡(𝐴
𝑡 ).

Note that the values of 𝑉𝑡 are determined by 𝑈𝐴
𝑡 , 𝑉𝑡(𝐴

𝑡 ) = 𝑈𝐴
𝑡 (𝐴

𝑡 ∪{𝑡}) −𝑈𝐴
𝑡 (𝐴

𝑡 ). Let  ⊆ ∖𝑡+1 denote the set of winning 
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battles of team 𝐴 within the remaining 𝑁 − 𝑡 battles. Rearranging the recursive definition for 𝑉 , we can get
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𝑉𝑡(𝐴
𝑡 ) =

∑
∶⊆∖𝑡+1

∏
𝑗∈

𝑝𝐴(𝑗)
∏

𝑗∈(⧵𝑡+1)⧵
(1 − 𝑝𝐴(𝑗))

[
𝑣𝐴(𝐴

𝑡 ∪ {𝑡} ∪) − 𝑣𝐴(𝐴
𝑡 ∪)

]
.

In particular, if 𝐴 ∩𝑡 ≠𝐴
𝑡 , then there exists no  such that 𝐴 =𝐴

𝑡 ∪{𝑡} ∪ or 𝐴 =𝐴
𝑡 ∪, and hence the coefficient 

of 𝑣𝐴(𝐴) in 𝑉𝑡(𝐴
𝑡 ) is zero; otherwise, 𝐴 ∩𝑡 =𝐴

𝑡 , and the coefficient is nonzero, which depends on the outcome of battle 𝑡
as follows.

If winning battle 𝑡, i.e., 𝑡 ∈𝐴, the coefficient of 𝑣𝐴(𝐴) in 𝑉𝑡(𝐴
𝑡 ) is∏

𝑗∈𝐴⧵𝐴
𝑡+1

𝑝𝐴(𝑗)
∏

𝑗∈(⧵𝑡+1)⧵(𝐴⧵𝐴
𝑡+1)

(1 − 𝑝𝐴(𝑗)), where 𝐴
𝑡+1 =𝐴

𝑡 ∪ {𝑡}.

If losing battle 𝑡, i.e., 𝑡 ∉𝐴, the coefficient of 𝑣𝐴(𝐴) in 𝑉𝑡(𝐴
𝑡 ) is

−
∏

𝑗∈𝐴⧵𝐴
𝑡+1

𝑝𝐴(𝑗)
∏

𝑗∈(⧵𝑡+1)⧵(𝐴⧵𝐴
𝑡+1)

(1 − 𝑝𝐴(𝑗)), where 𝐴
𝑡+1 =𝐴

𝑡 .

Until now, we have all the building blocks to determine the coefficient of 𝑣𝐴(𝐴) in PS𝑡(𝑣𝐴) for an arbitrary 𝑡 ∈ . If 𝑡 ∈𝐴, 
the coefficient of 𝑣𝐴(𝐴) in PS𝑡(𝑣𝐴) is∏

𝑗∈𝐴
𝑡

𝑝𝐴(𝑗)
∏

𝑗∈𝑡⧵𝐴
𝑡

(1 − 𝑝𝐴(𝑗))

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
the coefficient of 𝑉𝑡(𝐴

𝑡 ) in PS𝑡(𝑣𝐴)

∏
𝑗∈𝐴⧵𝐴

𝑡+1

𝑝𝐴(𝑗)
∏

𝑗∈(⧵𝑡+1)⧵(𝐴⧵𝐴
𝑡+1)

(1 − 𝑝𝐴(𝑗))

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
the coefficient of 𝑣𝐴(𝐴) in 𝑉𝑡(𝐴

𝑡 ) when 𝑡 ∈𝐴

=
∏

𝑗∈𝐴,𝑗≠𝑡

𝑝𝐴(𝑗)
∏

𝑗∉𝐴,𝑗≠𝑡

(1 − 𝑝𝐴(𝑗)).

Similarly, if 𝑡 ∉𝐴, the coefficient of 𝑣𝐴(𝐴) in PS𝑡(𝑣𝐴) that determined by battle 𝑡 is

−
∏

𝑗∈𝐴,𝑗≠𝑡

𝑝𝐴(𝑗)
∏

𝑗∉𝐴,𝑗≠𝑡

(1 − 𝑝𝐴(𝑗)).

Hence, the coefficient of 𝑣𝐴(𝐴) in PS𝑡(𝑣𝐴) is

(−1)𝟏(𝑡∉𝐴)
∏

𝑗∈𝐴,𝑗≠𝑡

𝑝𝐴(𝑗)
∏

𝑗∉𝐴,𝑗≠𝑡

(1 − 𝑝𝐴(𝑗)).

A.3. Proof of Lemma 3

Step 1: Suppose that 𝑣𝐴(⋅) and 𝑣𝐴(⋅) satisfy nonnegativity, monotonicity, and budget balance conditions in Assumption 2. Appar-

ently, the convex combination of (⋅) and 𝑣𝐴(⋅), i.e., 𝑣𝐴(⋅) = 𝜃𝑣𝐴(⋅) + (1 − 𝜃)𝑣𝐴(⋅), 𝜃 ∈ (0, 1), satisfy nonnegativity, monotonicity, and 
budget balance conditions.

We then establish the linearity of 𝐓𝐄(𝑣𝐴). Namely, 𝐓𝐄(𝑣𝐴) = 𝜃𝐓𝐄(𝑣𝐴) + (1 − 𝜃)𝐓𝐄(𝑣𝐴), which holds directly by Equation (2).

Step 2: Suppose that 𝑣𝐴 takes values other than zero or one. We can always find out 𝑣𝐴(⋅) ≠ 𝑣𝐴(⋅) and 𝜃 ∈ (0, 1) such that 
𝑣𝐴(⋅) = 𝜃𝑣𝐴(⋅) + (1 − 𝜃)𝑣𝐴(⋅), implying that 𝑣𝐴 is not a vertex of 𝐴. Immediately, the number of vertices is finite since 𝑣𝐴 at vertices 
can only take values of zero or one.

To be specific, let 𝛾1(𝑣𝐴) = max{𝑣𝐴(𝐴) ∶ 𝑣𝐴(𝐴) < 1} denote the maximum value of 𝑣𝐴(⋅) excluding 1; and 𝛾2(𝑣𝐴) =
max{𝑣𝐴(𝐴) ∶ 𝑣𝐴(𝐴) < 𝛾1(𝑣𝐴)} denote the maximum value that 𝑣𝐴(⋅) takes excluding 1 and 𝛾1(𝑣𝐴). Note that 𝛾1(𝑣𝐴) ∈ (0, 1)
by our assumption, while it is possible that 𝛾2(𝑣𝐴) = 0. Let (𝑣𝐴) = {𝐴 ∶ 𝑣𝐴(𝐴) = 𝛾1(𝑣𝐴)} denote the set of final outcomes 𝐴

such that 𝑣𝐴(𝐴) = 𝛾1(𝑣𝐴). We define two allocation rules in the following:

𝑣𝐴(𝐴) =
{

1, if 𝐴 ∈(𝑣𝐴),
𝑣𝐴(𝐴), otherwise,

and 𝑣𝐴(𝐴) =
{

𝛾2(𝑣𝐴), if 𝐴 ∈(𝑣𝐴),
𝑣𝐴(𝐴), otherwise.

In addition, both 𝑣𝐴(⋅) and 𝑣𝐴(⋅) satisfy nonnegativity, monotonicity, and budget balance conditions. Therefore, 𝑣𝐴(⋅) = 𝜃𝑣𝐴(⋅) + (1 −
𝜃)𝑣𝐴(⋅) for 𝜃 = 𝛾1(𝑣𝐴)−𝛾2(𝑣𝐴)

1−𝛾2(𝑣𝐴) ∈ (0, 1).

A.4. Proof of Theorem 1

Our purpose is to prove the optimal 𝑣𝐴 is given by

𝑣𝐴(𝐴) =
⎧⎪⎨ 1, if 𝑤𝐴(𝐴) > 𝑆𝐴,

0, if 𝑤𝐴(𝐴) < 𝑆𝐴,
20

⎪⎩ 0 or 1, if 𝑤𝐴(𝐴) = 𝑆𝐴.



Journal of Economic Theory 215 (2024) 105765X. Feng, Q. Jiao, Z. Kuang et al.

By Equation (2),

𝐓𝐄(𝑣𝐴) ≜
∑
𝑡∈

𝛼𝑡𝐏𝐒𝑡(𝑣𝐴)

=
∑
𝑡∈

𝛼𝑡

∑
𝐴⊆

⎡⎢⎢⎣(−1)𝟏(𝑡∉
𝐴)
⎛⎜⎜⎝

∏
𝑗∈𝐴,𝑗≠𝑡

𝑝𝐴(𝑗)

⎞⎟⎟⎠
⎛⎜⎜⎝

∏
𝑗∉𝐴,𝑗≠𝑡

(1 − 𝑝𝐴(𝑗))
⎞⎟⎟⎠𝑣𝐴(𝐴)

⎤⎥⎥⎦
=
∑
𝑡∈

𝛼𝑡

∑
𝐴⊆

⎡⎢⎢⎣(−1)𝟏(𝑡∉
𝐴)
⎛⎜⎜⎝

∏
𝑗∈𝐴,𝑗≠𝑡

𝑝𝐴(𝑗)

1 − 𝑝𝐴(𝑗)

⎞⎟⎟⎠
(∏

𝑡∈
(1 − 𝑝𝐴(𝑡))

)
1

1 − 𝑝𝐴(𝑡)
𝑣𝐴(𝐴)

⎤⎥⎥⎦
=

(∏
𝑡∈

(1 − 𝑝𝐴(𝑡))

) ∑
𝑡∈

𝛼𝑡

1 − 𝑝𝐴(𝑡)

∑
𝐴⊆

⎡⎢⎢⎣(−1)𝟏(𝑡∉
𝐴)

∏
𝑗∈𝐴,𝑗≠𝑡

𝑝𝐴(𝑗)

1 − 𝑝𝐴(𝑗)
𝑣𝐴(𝐴)

⎤⎥⎥⎦
= 𝛽

∑
𝑡∈

𝛼𝑡𝐏𝐒𝑡(𝑣𝐴),

where 𝐏𝐒𝑡(𝑣𝐴) ≜
∑

𝐴⊆

[
(−1)𝟏(𝑡∉𝐴)∏

𝑗∈𝐴,𝑗≠𝑡
𝑝𝐴(𝑗)

1−𝑝𝐴(𝑗)
𝑣𝐴(𝐴)

]
, 𝛼𝑡 ≜

𝛼𝑡

1−𝑝𝐴(𝑡)
, and 𝛽 ≜

∏
𝑡∈ (1 − 𝑝𝐴(𝑡)).

By Lemma 3, it suffices to focus on the allocations, which only take 0 or 1. Consider such a rule 𝑣𝐴 that satisfies 𝑣𝐴(̂𝐴) = 1
and 

∑
𝑡∈̂𝐴 𝑤𝑡 < 𝑆𝐴 for some ̂𝐴, where 𝑤𝑡 = 𝛼𝑡∕𝑝𝐴(𝑡) and 𝑆𝐴 =

∑
𝑡∈ 𝛼𝑡. Since 𝑣𝐴 only take 0 or 1, there must exist a 𝐴 ⊆

̂𝐴 such that 𝑣𝐴(𝐴) = 1 and 𝑣𝐴(𝐴) = 0 for any 𝐴⫋𝐴. We then construct a feasible rule 𝑣𝐴 in the following 𝑣𝐴(𝐴) ={
0, if 𝐴 =𝐴,

𝑣𝐴(𝐴), otherwise.
We will claim that 𝑣𝐴 dominates 𝑣𝐴 in terms of total effort induced.

When 𝑣𝐴(𝐴) changes from 1 to 0, the change in 𝐏𝐒𝑡(𝑣𝐴) equals

Δ𝐏𝐒𝑡(𝑣𝐴) = (−1)𝟏(𝑡∈𝐴)
∏

𝑗∈𝐴,𝑗≠𝑡

𝑝𝐴(𝑗)

1 − 𝑝𝐴(𝑗)
,

and the change in 𝐓𝐄(𝑣𝐴) thus equals

Δ𝐓𝐄(𝑣𝐴) = 𝛽
∑
𝑡∈

𝛼𝑡Δ𝐏𝐒𝑡(𝑣𝐴)

= 𝛽
⎡⎢⎢⎣
∑

𝑡∈𝐴

𝛼𝑡Δ𝐏𝐒𝑡(𝑣𝐴) +
∑

𝑡∉𝐴

𝛼𝑡Δ𝐏𝐒𝑡(𝑣𝐴)
⎤⎥⎥⎦

= 𝛽
⎡⎢⎢⎣−

∑
𝑡∈𝐴

𝛼𝑡

∏
𝑗∈𝐴,𝑗≠𝑡

𝑝𝐴(𝑗)

1 − 𝑝𝐴(𝑗)
+

∑
𝑡∉𝐴

𝛼𝑡

∏
𝑗∈𝐴,𝑗≠𝑡

𝑝𝐴(𝑗)

1 − 𝑝𝐴(𝑗)

⎤⎥⎥⎦
= 𝛽

⎛⎜⎜⎝
∏

𝑗∈𝐴

𝑝𝐴(𝑗)

1 − 𝑝𝐴(𝑗)

⎞⎟⎟⎠
⎡⎢⎢⎣−

∑
𝑡∈𝐴

𝛼𝑡

1 − 𝑝𝐴(𝑡)

𝑝𝐴(𝑡)
+

∑
𝑡∉𝐴

𝛼𝑡

⎤⎥⎥⎦
= 𝛽

⎛⎜⎜⎝
∏

𝑗∈𝐴

𝑝𝐴(𝑗)

1 − 𝑝𝐴(𝑗)

⎞⎟⎟⎠
⎡⎢⎢⎣
∑

𝑡∈𝐴

𝛼𝑡 +
∑

𝑡∉𝐴

𝛼𝑡 −
∑

𝑡∈𝐴

𝛼𝑡

𝑝𝐴(𝑡)

⎤⎥⎥⎦
= 𝛽

⎛⎜⎜⎝
∏

𝑗∈𝐴

𝑝𝐴(𝑗)

1 − 𝑝𝐴(𝑗)

⎞⎟⎟⎠
⎡⎢⎢⎣𝑆𝐴 −

∑
𝑡∈𝐴

𝑤𝑡

⎤⎥⎥⎦
≥ 𝛽

⎛⎜⎜⎝
∏

𝑗∈𝐴

𝑝𝐴(𝑗)

1 − 𝑝𝐴(𝑗)

⎞⎟⎟⎠
⎡⎢⎢⎣𝑆𝐴 −

∑
𝑡∈̂𝐴

𝑤𝑡

⎤⎥⎥⎦ > 0,

where 𝑤𝑡 =
𝛼𝑡

𝑝𝐴(𝑡)𝑝𝐵(𝑡)
and 𝑆𝐴 =

∑
𝑡∈

𝛼𝑡

1−𝑝𝐴(𝑡)
. This implies that for an allocation rule 𝑣𝐴, if there exists a ̂𝐴 such that 𝑣𝐴(̂𝐴) = 1

and 
∑

𝑡∈̂𝐴 𝑤𝑡 < 𝑆𝐴, we can always construct a feasible rule 𝑣𝐴 that yields strictly greater expected total effort than 𝑣𝐴 does, as a 
result, 𝑣𝐴 is not optimal. Therefore, the optimal rule must satisfy that
21

𝑣𝐴(𝐴) = 0 whenever 𝑤𝐴(𝐴) < 𝑆𝐴.



Journal of Economic Theory 215 (2024) 105765X. Feng, Q. Jiao, Z. Kuang et al.

Analogously, consider a rule 𝑣𝐴 that takes 0 and 1. If there exists a ̂𝐴 such that 𝑣𝐴(̂𝐴) = 0 and 
∑

𝑡∈̂𝐴 𝑤𝑡 > 𝑆𝐴. As before, 

we can always find a 
𝐴

⊇ ̂𝐴 such that 𝑣𝐴(
𝐴
) = 0 and 𝑣𝐴(𝐴) = 1 for all 𝐴⫌

𝐴
. We construct a feasible rule 𝑣𝐴 such that 

𝑣𝐴(𝐴) =

{
1 if 𝐴 =

𝐴
,

𝑣𝐴(𝐴) otherwise.
We will claim that 𝑣𝐴 dominates 𝑣𝐴 in terms of the expected total effort induced.

When 𝑣𝐴(
𝐴
) changes from 0 to 1, the change in 𝐏𝐒𝑡(𝑣𝐴) equals

Δ𝐏𝐒𝑡(𝑣𝐴) = (−1)𝟏(𝑡∉
𝐴
)

∏
𝑗∈

𝐴
,𝑗≠𝑡

𝑝𝐴(𝑗)

1 − 𝑝𝐴(𝑗)
,

and the change in 𝐓𝐄(𝑣𝐴) thus equals

Δ𝐓𝐄(𝑣𝐴) = 𝛽
∑
𝑡∈

𝛼𝑡Δ𝐏𝐒𝑡(𝑣𝐴)

= 𝛽
⎛⎜⎜⎝
∏

𝑗∈
𝐴

𝑝𝐴(𝑗)

1 − 𝑝𝐴(𝑗)

⎞⎟⎟⎠
⎡⎢⎢⎣
∑

𝑡∈
𝐴

𝑤𝑡 − 𝑆𝐴

⎤⎥⎥⎦
≥ 𝛽

⎛⎜⎜⎝
∏

𝑗∈
𝐴

𝑝𝐴(𝑗)

1 − 𝑝𝐴(𝑗)

⎞⎟⎟⎠
⎡⎢⎢⎣
∑

𝑡∈̂𝐴

𝑤𝑡 − 𝑆𝐴

⎤⎥⎥⎦ > 0,

where 𝑤𝑡 =
𝛼𝑡

𝑝𝐴(𝑡)𝑝𝐵(𝑡)
and 𝑇𝐴 =

∑
𝑡∈

𝛼𝑡

1−𝑝𝐴(𝑡)
. This implies that for some allocation rule 𝑣𝐴, if there exists a ̂𝐴 such that 𝑣𝐴(̂𝐴) = 0

and 
∑

𝑡∈̂𝐴 𝑤𝑡 > 𝑆𝐴, we can always construct a feasible rule 𝑣𝐴 that gives strictly greater expected total effort than 𝑣𝐴, as a result, 
𝑣𝐴 is not optimal. Therefore, the optimal rule must satisfy that

𝑣𝐴(𝐴) = 1 whenever 𝑤𝐴(𝐴) > 𝑆𝐴.

Up to now, it is shown that 𝑣𝐴(𝐴) =
{

1, if 𝑤𝐴(𝐴) > 𝑆𝐴,
0, if 𝑤𝐴(𝐴) < 𝑆𝐴.

It remains to investigate the case where 𝑤𝐴(𝐴) = 𝑆𝐴. Consider 

a 𝐴 such that 𝑤𝐴(𝐴) = 𝑆𝐴. Clearly, both 𝑣𝐴(𝐴) = 0 and 𝑣𝐴(𝐴) = 1 are feasible, since monotonicity conditions hold. By 
previous analysis, the expected total effort remains unchanged when 𝑣𝐴(𝐴) switches from 0 to 1 or from 1 to 0. The argument 
holds for all 𝐴 such that 𝑤𝐴(𝐴) = 𝑆𝐴. We therefore complete our analysis by discussing all the three cases.

In particular, when there does not exist a 𝐴 such that 𝑤𝐴(𝐴) = 𝑆𝐴, the optimal prize allocation rule is unique. Otherwise, 
the optimal prize allocation rule is not unique, since 𝑣𝐴(𝐴) can take either 0 or 1 for any 𝐴 such that 𝑤𝐴(𝐴) = 𝑆𝐴.

A.5. Proof of Proposition 3

When 𝑟(𝑡) = 1, 𝑠𝑖(𝑡) =
𝛼𝑡

1−𝑝𝑖(𝑡)
= (𝑐𝐴(𝑡)+𝑐𝐵(𝑡))−1

𝑐𝑖(𝑡)∕(𝑐𝐴(𝑡)+𝑐𝐵(𝑡))
= 1

𝑐𝑖(𝑡)
. Since 𝑤𝑡 =

1
𝑐𝐴(𝑡)

+ 1
𝑐𝐵(𝑡)

, the battle score 𝑤𝑡 increases as one player becomes 

more efficient for a lower marginal cost. In contrast, since Δ𝑠𝑡 =
1

𝑐𝐴(𝑡)
− 1

𝑐𝐵(𝑡)
, the headstart score 𝐻 increases as 𝑐𝐴(𝑡) decreases or 

𝑐𝐵(𝑡) increases.

A.6. Proof of Proposition 4

Let 𝑧 = min(𝑐𝐴(𝑡) ,𝑐𝐵(𝑡))
max(𝑐𝐴(𝑡) ,𝑐𝐵(𝑡))

and 𝑟̂(𝑧) ∈ (1, 2) represent the unique solution to 𝑟 = 1 + 𝑧𝑟.

(i) When 𝑟(𝑡) ≤ 𝑟̂(𝑧), 𝑤𝑡 =
𝑟(𝑡)(𝑐𝐴(𝑡)+𝑐𝐵(𝑡))

𝑐𝐴(𝑡)𝑐𝐵(𝑡)
. Then, the battle score grows with the discriminatory power. Meanwhile, Δ𝑠𝑡 =

𝑟(𝑡)(𝑐𝐵(𝑡)−𝑐𝐴(𝑡))
𝑐𝐴(𝑡)𝑐𝐵(𝑡)

. Thus, the headstart score grows with the discriminatory power if and only if 𝑐𝐴(𝑡) < 𝑐𝐵(𝑡).

(ii) When 𝑟(𝑡) ∈ (𝑟̂(𝑧), 2], 𝑤𝑡 =
𝑐𝐴(𝑡)+𝑐𝐵(𝑡)
𝑐𝐴(𝑡)𝑐𝐵 (𝑡)

1
1−max(𝑝𝐴(𝑡) ,𝑝𝐵(𝑡))

, which increases with max(𝑝𝐴(𝑡), 𝑝𝐵(𝑡)). According to Equation (5), 

max(𝑝𝐴(𝑡), 𝑝𝐵(𝑡)) increases with 𝑟(𝑡), the battle score increases with 𝑟(𝑡). Similarly, Δ𝑠𝑡 =
𝑐𝐴(𝑡)+𝑐𝐵(𝑡)
𝑐𝐴(𝑡)𝑐𝐵 (𝑡)

𝑝𝐴(𝑡)−𝑝𝐵(𝑡)
1−max(𝑝𝐴(𝑡) ,𝑝𝐵(𝑡))

. If 𝑐𝐴(𝑡) < 𝑐𝐵(𝑡), the 
headstart score grows with 𝑟(𝑡); otherwise, the headstart score decreases with 𝑟(𝑡).

(iii) When 𝑟(𝑡) > 2, both 𝑠𝐴(𝑡) and 𝑠𝐵(𝑡) are not affected by 𝑟(𝑡). Then, the battle score and the headstart score remain unchanged 
as 𝑟(𝑡) changes.

A.7. Proof of Proposition 7

Suppose that two players on team 𝐵, 𝐵(𝑡′) and 𝐵(𝑡′′), have higher winning probabilities than players 𝐴(𝑡′) and 𝐴(𝑡′′) on team 
22

𝐴, respectively. Without loss of generality, we assume 𝑤𝑡′ ≤ 𝑤𝑡′′ . The winning threshold for team 𝐵 must be larger than 𝑤𝑡′ : 



Journal of Economic Theory 215 (2024) 105765X. Feng, Q. Jiao, Z. Kuang et al.

𝑆𝐵 =
∑

𝑡∈ 𝑝𝐵(𝑡)𝑤𝑡 > 𝑝𝐵(𝑡′)𝑤𝑡′ + 𝑝𝐵(𝑡′′)𝑤𝑡′′ ≥ 0.5(𝑤𝑡′ +𝑤𝑡′ ) ≥ 𝑤𝑡′ . This implies that team 𝐵 does not earn sufficient scores by merely 
winning battle 𝑡′, which means that the unanimous rule is not optimal.
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