
Appendix A Experimental Instructions (Treatment Dis-

closed 2/3)

Welcome to our experiment! You will receive RMB15 for having shown up on time. Please

read all of the instructions carefully. Properly understanding the instructions will help you

to make better decisions and therefore earn you more money. The experiment will last ap-

proximately one hour. Your earnings in this experiment will be measured in the experimental

currency (i.e., EC) unit. At the end of the experiment, we will convert your earnings in EC

to RMB, and pay you your earnings in private. The exchange rate is 3.2 EC= RMB1.

Your total payment in this experiment will be the sum of

(1) Your show-up fee: RMB15;

(2) Your earnings in this experiment;

To make sure you understand the experiment, the experimenter will first read the instruc-

tions out loud before the start of the experiment, and support will also be available at any

time during the experiment. Please remember that you are not allowed to communicate with

other participants during the experiment. If you do not obey this rule, you will be asked to

leave the laboratory and will not be paid. Whenever you have a question, please raise your

hand and an experimenter will come to help you.

The game

In this experiment, there are two decision-making stages in each period. At the beginning

of each period, you will be randomly assigned to a group of 3 players. Each of you will be

randomly labeled A, B, or C and will receive 80 EC as your initial endowment.

Stage 1: Entry decision

In this stage, you will have to choose whether to enter the competition stage (Stage 2).

• If you choose to enter the competition, an entry fee of 40 EC will automatically be

deducted from your initial endowment. In exchange, you will have the opportunity

to compete against your group members and receive a prize of 100 EC with a certain

probability in Stage 2. Your winning probability will depend on both your decision and

those of your group members in Stage 2, and on how many of you have chosen to enter

Stage 2.
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• If you choose not to enter Stage 2, no entry fee will be charged. However, you will not

have a chance to win the prize.

• Once all players have made their entry decisions, the total number of participants in

the competition in Stage 2 will be revealed to all members (participants and non-

participants) in your group. Those who have chosen not to enter Stage 2 will no longer

need to make decisions in this period, but will have to wait quietly for their group

members to complete Stage 2. If no-one in your group enters Stage 2, the prize will be

kept by the experimenter.

Stage 2: Competition

In this stage, all entrants compete for a prize of 100 EC. After learning the actual number

of entrants in his/her group, each entrant must choose the level of effort he/she is willing to

invest. The cost of effort x is calculated by a cost function, C(x) = xα(α = 2/3), and will

be deducted from your initial endowment for this period (therefore, you can choose an effort

level that costs less than the balance of your endowment, i.e., 40 EC.). After all entrants in

your group have made their decisions, the computer will select one winner in your group:

Figure 4: Lottery Wheel Screenshot–Entrants

• If only one player has chosen to enter Stage 2, this player will receive the prize with a

probability of 100%, no matter how much he/she has invested in the competition.

29

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Figure 5: Lottery Wheel Screenshot–Non-entrants

• If more than one player has chosen to enter Stage 2, your probability of winning the

prize will depend on your choice of effort relative to that of all entrants in your group.

Specifically, your probability of winning will be equal to your effort divided by the total

effort of all entrants in your group, namely Pi = (xi)/(xi + xj), where xj is the total

effort of all other entrants in your group). Note that in this case you may have one or

two other competitors in your group. After choosing your effort level, a lottery wheel

will appear on your computer screen. The probability of all entrants winning and the

random draw process will be displayed in a dynamic lottery wheel. The wheel will be

divided into three colored areas: red, blue, and yellow. The red area represents the

winning area of participant A, the blue area, the winning area of participant B, and the

yellow area, the winning area of participant C. The relative size of the colored areas will

correspond to the probability of each participant winning (note that if there are only

two entrants in your group, the wheel will only have two colors). In the center of the

lottery wheel an arrow will initially point vertically upwards. When the random draw

begins, the arrow will start spinning and after a while will stop randomly. If the arrow

stops in the red area, participant A will win the prize. If the arrow stops in the blue

area, participant B will win the prize. If the arrow stops in the yellow area, participant
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C will win the prize. Obviously, the higher the level of effort you choose relative to

that of your competitor(s), the larger your winning area on the lottery wheel, and the

more likely you will be the winner of this competition. At the same time, the higher

the level of effort, the higher the cost.

(To help you to better understand the relationship between your choice of effort and the

cost of your effort, we provide a table on the last page of this document that describes the

levels of effort you can choose and their corresponding costs. You can also use the calculator

button on your screen to help you with your decision.)

Your earnings

Your earnings for each period will be calculated at the end of each period, as follows (and

displayed to you):

• If you choose not to enter Stage 2

your earnings = Endowment = 80EC

(Please note that although you can keep your initial endowment for this period, it

cannot be carried over to the next period(s) to help your decisions in other periods.)

• If you choose to enter Stage 2

a If you lose,

your earnings = Endowment(80EC)−Entry Fee(40EC)−effort cost(xαEC)

b If you win,

your earnings = Endowment(80EC)− Entry Fee(40EC)

+ Prize(100EC)− effort cost(xαEC)

Procedure

You will play 25 periods of this two-stage game. However, you will always be randomly

matched with two participants and labeled A, B, or C at the beginning of each period. On

the lottery screen, your group members’ entry decision, effort level and corresponding cost,

probability of winning, and the number of entrants in your group will be displayed on your

screen, irrespective of whether you choose to enter Stage 2. (see the sample screenshots
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above) At the end of each period, your earnings will be calculated by the computer and

displayed on your screen.

After completing all 25 periods, the computer will randomly draw one period out of these

25 periods. Your total earnings from this period will be converted to RMB (at the rate of

3.2 EC= RMB1) and paid to you, together with your show-up fee (RMB15).

To further ensure that all participants in this experiment understand the game correctly,

you will need to answer several control questions designed based on the information provided

in these instructions. The experiment will start after all participants have answered these

questions correctly. Please do not hesitate to ask for help if you have any questions regarding

the information provided in our instructions or the control questions.

At the end of today’s experiment, you will also need to complete a short post-experiment

questionnaire, including your demographic information (e.g., sex, age, study major, etc.)

and your decisions in the experiment. All information provided will remain anonymous and

will be kept strictly confidential. This information is collected only for academic research

purposes.

Thank you again for your participation and your patience! The experiment will start

soon.
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Cost schedule
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Appendix B Supplementary materials to predictions

Equilibrium Characterization when N is Disclosed

Whenever N ≥ 2, each participant i chooses his level of effort xi to maximize his expected

payoff

πi =
xri∑N
j=1 x

r
j

V − xαi ,

The unique equilibrium effort x∗N is determined by the first order condition

r
N − 1

N2xN
v = αxα−1

N .

Since the payoff πi of a representative contestant i is globally concave in xi assuming that all

others taking the effort of x∗N , therefore x∗N =
(
N−1
N2

rV
α

) 1
α is a unique symmetric equilibrium

effort. And the equilibrium payoff is π∗
N = 1

N
V − (x∗N)α = V

N

(
1− N−1

N
r
α

)
. In a standard

Tullock contest wihN contestants, to guarantee the existence of the pure-strategy equilibrium

effort we must have r ≤ α N
N−1

. Hence we impose an upper limit on r such that r ≤ α M
M−1

≤
α N
N−1

.

Equilibrium Characterization when N is Concealed

Consider an arbitrary potential participant i who chooses to enter the contest with probability

qC . Suppose that all other potential participants play a strategy (qC , xC) with xC > 0. He

chooses his effort xi,C to maximize his expected payoff

πi(xi,C | qC , xC) =
M∑
N=1

CN−1
M−1q

N−1
C (1− qC)M−N [

xri,C
xri,C + (N − 1)xrC

V − xαi,C ].

Differentiating πi(xi,C | qC , xC) with respect to xi,C yields

dπi(xi,C | qC , xC)

dxi,C
=

M∑
N=1

CN−1
M−1q

N−1
C (1− qC)M−N (N − 1)rxr−1

i,C x
r
CV

[xri,C + (N − 1)xrC ]2
− αxα−1

i,C .

Suppose that a symmetric pure-strategy equilibrium effort exists. This equilibrium can

be solved by the first order condition dπi
dxi,C
|xi,C=xC = 0 given an entry probability qC . Hence,

x∗C(qC) must solve

M∑
N=1

CN−1
M−1q

N−1
C (1− qC)M−N (N − 1)rV

N2x∗C
− αx∗α−1

C = 0,
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which yields

x∗C(qC) = [
M∑
N=1

CN−1
M−1q

N−1
C (1− qC)M−NN − 1

N2

rV

α
]
1
α .

The equilibrium expected payoff from entering the contest is

π∗(x∗C(qC), qC) =
M∑
N=1

CN−1
M−1q

N−1
C (1− qC)M−N V

N
− [

M∑
N=1

CN−1
M−1q

N−1
C (1− qC)M−NN − 1

N2

rV

α
]

=
M∑
N=1

CN−1
M−1q

N−1
C (1− qC)M−N V

N
(1− N − 1

N

r

α
).

By entering the contest and submit an effort of x∗C(qC), every potential contestant i ends

up with an overall expected payoff π∗(x∗(qC), qC) − ∆, which must be zero in equilibrium.

Therefore, the equilibrium entry probability q∗C is determined by solving π∗(x∗(q∗C), q∗C) = ∆.

The expected overall effort of the contest (TE∗
C (q∗C)) obtains as

TE∗
C (q∗C) = Mq∗Cx

∗(q∗C) = Mq∗C [
M∑
N=1

CN−1
M−1q

∗N−1
C (1− q∗C)M−NN − 1

N2

rV

α
]
1
α .

In the following, we will show the equilibrium entry probability q∗C is unique. Note that

q∗C satisfies F (q∗C) =
M∑
N=1

CN−1
M−1q

∗N−1
C (1 − q∗C)M−N V

N
(1 − N−1

N
r
α

) − ∆ = 0. Since F (q∗C) is

continuous in and differentiable with q∗C , we first claim that F (q∗C) strictly decreases with

q∗C to prove that q∗C is unique. Taking its first order derivative of F (q∗C) with respect to q∗C

yields:

F (q∗C)

dq∗C
=

M∑
N=1

CN−1
M−1[(N − 1)q∗N−2

C (1− q∗C)M−N − (M −N)q∗N−1
C (1− q∗C)M−N−1]π∗

N

=
M∑
N=1

CN−1
M−1(N − 1)q∗N−2

C (1− q∗C)M−Nπ∗
N −

M∑
N=1

CN−1
M−1(M −N)q∗N−1

C (1− q∗C)M−N−1π∗
N

= (M − 1){
M∑
N=2

CN−2
M−2q

∗N−2
C (1− q∗C)M−Nπ∗

N −
M−1∑
N=1

CN−1
M−2q

∗N−1
C (1− q∗C)M−N−1π∗

N}

= (M − 1)
M−1∑
N=1

CN−1
M−2q

∗N−1
C (1− q∗C)M−N−1

(
π∗
N+1 − π∗

N

)
.

This first-order derivative is clearly negative since π∗
N = 1

N

[
1−

(
1− 1

N

)
r
α

]
V ≥ 0 and is

monotonically decreasing with N .

In addition, when all other potential participants enter with probability qC = 0, a par-

ticipating contestant receives a payoff V − ∆ > 0, hence he should enter with probability
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one. Similarly, when all other potential participants enter with probability 1, a participating

contestant would receive a negative expected payoff given the regular assumption ( V
M
< ∆)

and hence should not enter. Neither qC = 0 nor qC = 1 constitute an equilibrium. Therefore,

a unique q∗C ∈ (0, 1) that solves π∗(x∗C(qC), qC) = ∆ exists in the equilibrium, in which each

potential participant is indifferent between entering and staying inactive when all others play

the equilibrium strategy.

A two-player example

To compare the equilibrium efforts under different disclosure policies and cost structures,

let us consider a two-player example (M = 2) with V = 1,∆ = 2
3
, r = 1, hence the actual

number of contestants N can only be 1 or 2.

Given V, r, α and h (N) = N−1
N2

rV
α

, we have h (1) = 0, h (2) = 1
4
. Under disclosure policy,

when N = 1, x∗N=1 = [h (1)]
1
α ; when N = 2, x∗N=2 = [h (2)]

1
α , the average equilibrium

effort is Avg.x∗N = (1− q∗D)x∗N=1 + q∗Dx
∗
N=2 = (1− q∗D) (h (1))

1
α + q∗D (h (2))

1
α . While under

concealment, the equilibrium effort is x∗C = [(1− q∗C)h (1) + q∗Ch (2)]
1
α .

(a) concave cost α = 2
3 (b) linear cost α = 1 (c) convex cost α = 4

3

Figure 6: A two-player example

We plot x∗N = [h (N)]
1
α with different α separately in Figure 6. The X-axis is h (N) , and

the Y-axis is x∗N . In figure 6(a), with concave cost α = 2
3
, q∗C = q∗D = 0.38, the average of

h (N), Avg.h (N) = (1− q∗C)h (1) + q∗Ch (2) = 0.14 induces x∗C = [h (N)]
3
2 = 0.05, which is

smaller than Avg.x∗N = (1− q∗D)x∗N=1 +q∗Dx
∗
N=2 = 0.09; In figure 6(b), with linear cost α = 1,

q∗C = q∗D = 0.44,Avg.h (N) = (1− q∗C)h (1) + q∗Ch (2) = 0.11 induces x∗C = [h (N)]
1
α = 0.11,

which is the same as Avg.x∗N = (1− q∗D)x∗N=1 + q∗Dx
∗
N=2 = 0.11; In figure 6(c), with convex
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cost α = 4
3
, q∗C = q∗D = 0.48, Avg.h (N) = (1− q∗C)h (1) + q∗Ch (2) = 0.09 induces x∗C =

[h (N)]
3
4 = 0.16, which is bigger than Avg.x∗N = (1− q∗D)x∗N=1 + q∗Dx

∗
N=2 = 0.13. This simple

example basically illustrates how Jensen’s inequality is used to prove our main theoretical

prediction.

Multiple equilibria

In a symmetric equilibrium, each potential participant enters with the same probability

and chooses the same level of effort upon entry. While the symmetric equilibrium is the

most natural one to consider for ex-ante symmetric players, there always exist asymmetric

equilibria in which a subset M
′
(< M) of potential participants enter either stochastically or

deterministically, while the remaining (M −M ′
) potential participants always stay inactive.

In such an asymmetric equilibrium, both the active and inactive participants should end up

with an expected payoff of zero. For the M
′

active potential participants who enter with

probability q∗
M ′ (> q∗M), their equilibrium strategy is equivalent to the strategy played in the

symmetric equilibrium of a game that starts with M
′

potential participants.

To guarantee that all participants enter the contest stochastically such that disclosure

policy is not irrelevant, we make the regular assumption V
M
< ∆ < V as a sufficient condition.

We further impose an upper limit r ∈ (0, r] ⊂ (0, α M
M−1

] to guarantee the existence of a pure-

strategy equilibrium effort. Under these restrictions, the expected payoff from entering the

contest should at least cover the entry cost (i.e, π∗
M ≥ ∆). In this unique equilibrium (q∗M , x

∗),

each participant expects an overall payoff of zero since the expected payoff from the effort-

making stage fully offsets the entry cost. However, when r > α M
M−1

, it is possible that for

some M
′
(≤M) , π∗

M ′ < ∆ while π∗
M ′−1

≥ ∆, such that not all M potential participants

would like to make positive effort. In this case, there is no symmetric equilibrium, only

asymmetric equilibrium exists, and the number of asymmetric equilibrium can be more than

one.

Given the parameters we adopt in the experimental design (V = 100,∆ = 40, r = 1,M =

3), the assumptions V
M

< ∆ < V and r ≤ α M
M−1

are satisfied automatically, the unique

symmetric equilibrium has been fully characterized in the main text. Now consider an asym-

metric equilibrium with M
′

= 2 active potential participants whereas the third participant

always stays inactive. Note that the number of active potential participants should be at

least 2. When there is only one active participant, he will earn the prize with probability one

regardless of his effort and hence should always enter. In this case, at least one of the two

inactive participants also has an incentive to become active. To solve the equilibrium strat-
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egy of the active potential participants, it is equivalent to find the symmetric equilibrium of

a game with M
′

potential participants. In this game, the regular assumption no longer holds

given that V
M ′ > ∆. When this is the case, Fu et al. (2015) (in Corollary 3) characterizes the

condition for pure-strategy equilibrium effort with deterministic vs. stochastic entry. They

show that when r ≤ α M
′

M ′−1

(
1− M

′
∆

V

)
, there exists a unique asymmetric equilibrium, in

which all M
′
potential participants enter the contest with probability one and exert the same

level of effort in pure-strategy upon deterministic entry whereas the third participant stays

inactive. However, when r > α M
′

M ′−1

(
1− M

′
∆

V

)
, there exists a unique asymmetric equilib-

rium, in which all potential participants enter the contest with probability q∗ < 1 and exert

the same level of effort in pure strategy upon stochastic entry whereas the third participant

stays inactive. Given the specific parameter values used in our experiment, we always have

r > α M
′

M ′−1

(
1− M

′
∆

V

)
, regardless α = 2

3
, 1 or 4

3
. Therefore, these M

′
= 2 potential partici-

pants should enter the contest with probability q∗ < 1 and exert the same level of effort upon

entry. The equilibrium outcomes (including individual effort, entry rate and total effort)

under the Disclosure policy can be further characterized with the following table:

x∗N π∗
N q∗D TE∗

D(q∗D)

N = 1 N = 2 N = 1 N = 2

α = 2
3

0 229.64 100 12.50 0.69 215.96

α = 1 0 25.00 100 25.00 0.80 32.00

α = 4
3

0 9.01 100 31.25 0.87 13.73

Such an asymmetric equilibrium under the Concealment policy should look like the fol-

lowing:

q∗C x∗C TE∗
C (q∗C)

α = 2
3

0.69 130.40 178.83

α = 1 0.80 20.00 32.00

α = 4
3

0.87 8.14 14.20

Comparing the equilibrium total effort in the above tables, one could see that the op-

timal disclosure policy should not change under the asymmetric equilibrium. Therefore,

when the same equilibrium concept is used (either symmetric or asymmetric), our theoret-

ical predictions regarding the optimal disclosure policy should always hold. Furthermore,

the comparison shows that given a disclosure policy, the total effort elicited from a contest

with M = 3 potential participants is lower compared to a contest with M
′

= 2 potential
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participants, which confirms the result provided by Fu et al. (2015): A contest is less able to

elicit effort if it involves too large a pool of potential participants.

Given the existence of the asymmetric equilibrium, there is a possibility that participants

in our experiment may have played the asymmetric equilibrium in stead of the symmetric

equilibrium. Hence, in Appendix C.4 and C.5, we further summarize how frequently we

observe contests with different sizes (i.e., N=0, N=1, N=2 and N=3) and distributions of

individual entry rate for each treatment. Note that the maximum number of entrants should

be 2 in the asymmetric equilibrium. However, we observe a significant number of contests

with N=3 in each treatment and the individual entry rate is distributed widely across 0 to 1.

Both evidences suggest that it is very unlikely that our participants played the asymmetric

equilibrium in the experiment.

39

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Appendix C Additional Results

Appendix C. 1: Individual Effort in Concealed Treatments:
Mixed-effects Regressions (Rounds 14-25)

VARIABLES Concave Linear Convex

Effort 155.60*** 22.85*** 9.76***
(12.30) (2.46) (0.54)

σ2
(sub)session 258.59 14.44 0.00

(435.39) (17.63) (0.00)

σ2
individual 3,007.12 82.35 11.02

(793.56) (21.46) (2.69)

Equ. 117.97 18.12 7.42
p-value 0.00 0.05 0.00

Adjusted Equ. 160.44 19.56 7.63
p-value 0.69 0.18 0.00

No. of Groups 4 4 4
We estimate the average individual effort for different cost functions separately
with mixed-effects models to control for the random effects at the individual and
(sub)session levels, using data from rounds 14-25. The p-values under “Equ.” and
“Adjusted Equ. ” are from Wald tests that compares the estimated average individ-
ual effort with the corresponding predictions. Stars indicate the significance level of
each coefficient (** p < 0.05, *** p < 0.01).
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Appendix C. 2: Individual Effort in Disclosed treatment
Mixed-effects Regressions with control variables (Rounds 14-25)

Mixed Linear Regressions Mixed Tobit Regressions

Concave Linear Convex concave linear convex

N=1 10.20 1.928 -1.415
(33.69) (3.911) (1.771)

N=2 195.9*** 26.40*** 9.958*** 204.2*** 31.22*** 9.836***
(32.29) (3.810) (1.747) (60.67) (6.948) (2.872)

N=3 154.4*** 23.09*** 7.472*** 145.3** 27.32*** 6.961**
(32.32) (3.836) (1.741) (60.71) (6.959) (2.865)

Risk 0.901 -0.326 0.105 4.477 -0.628 0.0752
(3.161) (0.480) (0.230) (5.741) (0.856) (0.381)

Male 10.68 2.889 -0.247 18.59 6.881 0.516
(14.92) (2.534) (1.004) (27.36) (4.587) (1.672)

Win t-1 -0.0970 -0.166 -0.507 -3.078 -0.743 -0.527
(6.744) (0.983) (0.345) (10.57) (1.267) (0.433)

Major -7.610 0.450 2.300 9.311 -1.615 3.721
(20.26) (2.912) (1.262) (36.78) (5.232) (2.087)

σ2
sub(session) 444.96 2.86 0 2675.63 15.01 0

(447.08) (5.47) (0.00) (2380.52) (21.45) (0.00)

σ2
individual 1461.39 34.28 7.2 4986.22 118.66 20.56

(441.25) (11.20) (1.85) (1612.54) (36.94) (5.57)

Observations 379 340 337 344 278 274

Number of groups 4 4 4 4 4 4

We estimate the average individual effort for different cost functions separately with mixed-effects
models to control for the random effects at the individual and (sub)session levels, using data from
rounds 14-25. “Risk” is a self-reported measure of willingness to take risks in everyday life, which
takes integers between 0 and 10, with 0 being “Not willing to take risks at all” and 10 being “Very
willing to take risks.” “Wint−1” is a binary variable that is equal to 1 if the participant won in the
previous round, and 0 otherwise. “Major” is a dummy variable that equals to 0 for participants
who study science, engineering, mathematics or economics, and 1 for the remaining areas (e.g.,
arts, history, literature, or law). Stars indicate the significance level of the estimated coefficients
(** p < 0.05, *** p < 0.01). Standard errors are reported in brackets.
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Appendix C. 3: Individual Effort in Concealed
Treatments: Mixed-effects Regressions with con-
trol variables (Rounds 14-25)

VARIABLES Concave Linear Convex

Concealment 187.6*** 26.85*** 7.265***
(35.68) (6.047) (1.934)

Risk -5.713 0.124 0.424
(4.987) (0.817) (0.244)

Male 21.38 -1.217 -0.107
(23.67) (3.253) (1.068)

Win t-1 -5.610 -1.410 -0.00542
(6.067) (0.889) (0.373)

Major -6.593 -4.521 0.685
(22.47) (4.193) (1.594)

σ2
sub(session) 497 8.81 0

(610.43) (14.50) (0.00)

σ2
individual 2686.95 83.4 10.15

(727.64) (21.90) (2.50)

Observations 335 331 347
Number of groups 4 4 4

We estimate the average individual effort for different cost
functions separately with mixed-effects models to control for
the random effects at the individual and (sub)session lev-
els, using data from rounds 14-25. “Risk” is a self-reported
measure of willingness to take risks in everyday life, which
takes integers between 0 and 10, with 0 being “Not willing to
take risks at all” and 10 being “Very willing to take risks.”
“Wint−1” is a binary variable that is equal to 1 if the partic-
ipant won in the previous round, and 0 otherwise. “Major”
is a dummy variable that equals to 0 for participants who
study science, engineering, mathematics or economics, and
1 for the remaining areas (e.g., arts, history, literature, or
law). Stars indicate the significance level of the estimated
coefficients (** p < 0.05, *** p < 0.01). Standard errors are
reported in brackets.

42

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Appendix C. 4: Frequency of the number of entrants by treatment

Concave Linear Convex

Disclose Conceal Disclose Conceal Disclose Conceal

N=0 22 18 21 16 24 22

N=1 67 114 112 131 126 103

N=2 173 180 189 187 167 177

N=3 138 88 78 66 82 98

Appendix C 5: Histogram of Individual entry rate
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Appendix C 6: Histograms of individual effort
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