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a b s t r a c t 

This paper investigates whether it is optimal for a contest organizer to disclose the actual 

number of contestants for total effort optimization when entry in a contest is costly and 

endogenous. Our model suggests that in a Tullock (1980) contest, the answer depends on 

the convexity of the cost of effort function. Even though the equilibrium entry rate and 

rent dissipation are invariant to the disclosure policy, disclosing (concealing) the actual 

number of entrants can lead to a higher total effort when the cost function is concave 

(convex). To test these theoretical predictions, we design a 2 × 3 between-subjects labo- 

ratory experiment using lottery contests. We vary the disclosure policy (fully disclosed vs. 

fully concealed) in one dimension and the curvature of the cost of effort function (concave, 

linear, or convex) in the other dimension. Our results are largely consistent with the the- 

oretical predictions regarding the optimal disclosure policy, despite the presence of mod- 

erate over-entry and over-exertion behavior that is commonly observed in experimental 

studies of contests. 

© 2021 Elsevier B.V. All rights reserved. 

 

 

1. Introduction 

Contests, in which a number of players exert costly and irreversible effort to compete for a limited number of prizes

are ubiquitous. Most of the existing literature on contest theory and experiments assume that the number of contestants is 

fixed and common knowledge. 1 However, in real-life examples, decisions to enter a contest often involve explicit up-front 

participation cost or opportunity cost (of the time, effort and resources spent in the decision-making process), or both. 

Consequently, the number of actual participants in a contest is usually determined endogenously. For example, R&D firms 

must collect project-related background information, set up proper equipment and facilities, and select which innovation 

to undertake from a variety of potential projects; Academics aiming to compete for a research grant are often required to
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conduct preliminary research before writing a formal application; Employees who are not content with their current job 

should decide whether it is worth the effort and time updating their resumes and looking for a new job. Similar arguments

can be applied to sports, lobbying or rent-seeking, and crowd-sourcing contests. 

While there is ex-ante population uncertainty for both the contest organizer and potential contestants, the organizer usu- 

ally observes the actual number of contestants after entry decisions have been made. Therefore, there is ex-post information 

asymmetry between the organizer and the contestants if the organizer does not reveal this information. In sports contests, 

athletes are often aware of the number of competitors they are facing, whereas firms (in R&D races), job seekers, lobbyists

and participants in crowd-sourcing contests may not know this information. Disclosing or concealing the actual number 

of contestants prior to its realization could affect the potential participants’ entry decisions and effort choices. Sometimes 

organizers have the freedom and authority to stipulate specific disclosure policies (e.g., in crowd-sourcing or labor-market 

contests), while other times they are bound by law or the nature of the contests (e.g., in lobbying or sports contests). This

information asymmetry naturally raises the question of whether it is optimal for a contest organizer (who has commitment 

power) to commit to a disclosure policy before observing the actual number of contestants. 

In this paper, we aim to address this question both theoretically and empirically using a laboratory experiment. In par- 

ticular, we focus on the relationship between the optimal disclosure policy and the curvature of the cost-of-effort function. 

The existing literature on optimal disclosure policy ( Lim and Matros, 2009; Fu et al., 2016; Feng and Lu, 2016; Boosey et al.,

2017 ) has focused on contests with exogenous stochastic entry and linear cost of effort. Both Lim and Matros (2009) and

Aycinena and Rentschler (2019) show that, when the cost of effort is linear, the total effort elicited from all contestants is

invariant to disclosure policy. Lim and Matros (2009) further suggest that, even if the strategic organizer could choose a dis-

closure policy that is contingent on the number of contestants, to maximize total effort, she would always prefer to reveal

the number of contestants after observing this information. Focusing on how the curvature of the cost-of-effort function 

affects optimal disclosure policy, our paper sheds new light on this problem: Depending on whether the contest organizer’s 

objective is to maximize or minimize the total effort expended by all contestants, the optimal disclosure policy should vary 

accordingly if the cost-of-effort function is non-linear. 2 

We model the contest as a two-stage game in which the potential participants first decide whether to incur a fixed

cost to enter the contest in Stage 1, and then make their effort choices to compete for a prize in Stage 2. In addition, we

add a preliminary stage (Stage 0), during which the contest organizer must pre-commit to either fully disclosing or fully 

concealing the actual number of contestants after entry decisions have been made in Stage 1. Adopting the well-studied 

Tullock (1980) contest, we predict that even though the equilibrium entry probabilities and rent-dissipation rates are invari- 

ant to the disclosure policy in all cost structures, fully disclosing (concealing) the number of entrants will lead to a higher

expected total effort when the cost of effort function is concave (convex). Similar to Lim and Matros (2009) , disclosure

policy is irrelevant for eliciting total effort when the cost of effort is linear even if entry is endogenously determined. 

Fully disclosing or concealing the actual number of entrants in contests (i.e., a Disclosure policy or a Concealment policy) 

involves different equilibrium concepts from the perspective of game theory. However, regardless of the disclosure policy, 

the ex-ante expected payoff from entering the contest should offset the cost of entry in equilibrium. Therefore, the equilib- 

rium entry rate and the (expected) total cost of effort and rent dissipation rate should be the same under different disclosure

policies. Given the same equilibrium entry rate, the disclosure policy only affects the expected total effort through individu- 

als’ effort choices. When the actual number of entrants is disclosed, individual’s equilibrium effort decreases with the actual 

number of entrants. Moreover, when the cost function is concave, a contestant with a decreasing marginal cost of effort is

motivated to put even more effort in contests with less entrants. Hence, a more favorable contest (with a small number of

entrants) motivates contestants more than a less favorable contest (with a large number of entrants) demotivates them. This 

leads contestants to behave as if they were risk-loving when supplying effort. In contrast, the equilibrium effort of their 

counterparts under a Concealment policy is uniform. As a result, the expected total effort is higher when the actual number

of entrants is disclosed than when it is concealed. Conversely, when the cost function is convex, the contestants behave as if

they were risk-averse (as a contest with a small number of contestants motivates contestants less than a contest with a large

number of contestants demotivates them), hence the expected total effort is higher when the actual number of entrants is 

concealed. 

To test these theoretical predictions, we conducted a 2 × 3 between-subjects experiment at Wuhan University (China) 

at the end of 2017. We manipulate the disclosure policy (fully disclosed or fully concealed) or the curvature of the cost

function (concave, linear, or convex), one at a time. Our experimental results provide reasonably good support for our model 

predictions. First, given a certain cost structure the participants enter the contests with similar probabilities, irrespective of 

whether the actual number of entrants is disclosed. Second, in line with theory, the total cost of effort (and rent dissipation)

is not significantly different across disclosure policies for a given cost structure, especially when the data from the second 

half of the experimental sessions are considered. Third, as predicted, the average total effort is insensitive to the disclosure 

policy when the cost function is linear, whereas it is significantly higher in the disclosed treatment when the cost function is

concave. The only deviation from our theoretical predictions is when the cost function is convex: in this scenario, although 
2 In contest literature, “effort” is broadly used to represent time, money, physical or mental endeavor, or other resources invested in the competition. 

Fully identifying the curvature of the cost-of-effort function is not straightforward in real-world contests since they often involve different types of “effort”

across different stages. Nonetheless, it is reasonable to argue that when “effort” mostly involves scarce resources like time or money, the “effort” cost 

function is likely to be convex, whereas when “effort” exertion involves repetition and learning, the “effort” cost function is likely to be concave. 
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the average total effort is higher in the concealed treatment (following the direction of the prediction), the difference is not

statistically significant. Finally, the data at the individual level show moderate levels of over-entry (particularly when the 

cost function is concave) and over-exertion (particularly when the cost function is convex), which are commonly observed 

in previous contest experiments. 

Our paper is broadly related to the theoretical and experimental literature on contests with ex ante population uncer- 

tainty. In the growing theoretical literature, population uncertainty is either modeled as exogenous stochastic entry, in which 

potential contestants enter with a given probability ( Higgins et al., 1985; Myerson and Wärneryd, 2006; Münster, 2006; Lim

and Matros, 2009; Fu et al., 2011; Kahana and Klunover, 2015; 2016; Ryvkin and Drugov, 2020 ), or driven by endogenous

entry decisions made before a contest ( Higgins et al., 1985; Fu and Lu, 2010; Kaplan and Sela, 2010; Fu et al., 2015 ). While

Higgins et al. (1985) , Münster (2006) , and Myerson and Wärneryd (2006) pioneered the theoretical models of contests un-

der stochastic entry, Lim and Matros (2009) and Fu et al. (2011) are the first papers to examine whether contest organizers

should reveal the actual number of entrants. Extending on Lim and Matros (2009) which finds that the expected total effort

does not depend on the disclosure policy when the cost of effort is linear, Fu et al. (2011) adopt a more general ratio-

form contest success function, with the standard Tullock contest as a special case. 3 Similarly, they find that the optimal

disclosure policy depends on the property of the characteristic function: fully disclosing (concealing) the actual number of 

entrants generates a higher expected total effort when the characteristic function is strictly concave (convex). 4 Our paper 

consider an endogenous-entry model that is similar to Fu et al. (2015) and provide experimental tests for our theoretical

predictions. 5 

Compared with the theoretical literature on contests with ex ante population uncertainty, the experimental literature 

is sparse. Only a handful of studies examine contests with endogenous entry. Anderson and Stafford (2003) investigate 

how entry in rent-seeking contests and contest expenditure are affected by the available number of participants, cost 

heterogeneity, and the entry fee. Cason et al. (2010) compare entry in winner-take-all and proportional-prize contests. 

Morgan et al. (2012) and Morgan et al. (2016) allow participants to choose to enter sequentially in continuous time, and

the number of entrants at each time-point is observable to all participants. Hammond et al. (2019) study all-pay contests

in which bidders have private valuations to explore how to set a prize-augmenting entry fee to elicit more effort, when

bids must be made without knowing the number of entrants. Liu et al. (2014) use field experimental data collected from

the online crowd-sourcing platform Taskcn to study how contest participation and submission quality depend on the size 

of the reward and the presence of a soft reserve or early high-quality submission. Adamson and Kimbrough (2021) examine

both theoretically and experimentally how variation in different costs affects contests, with an very interesting focus on 

the spacial element of conflicts, i.e, the size and the shape of the territory. None of the aforementioned studies investigate

the optimal disclosure policy and the actual number of entrants is either fully disclosed or fully concealed throughout the 

contests. 6 

The experimental studies closest to ours are Aycinena and Rentschler (2019) and Boosey et al. (2017, 2020) . While

Aycinena and Rentschler (2019) studies (both theoretically and experimentally) endogenous entry decisions and disclosure 

policy in all-pay contests with private values and linear effort cost, Boosey et al. (2017) test the theoretical predictions of

Lim and Matros (2009) in lottery contests with stochastic entry and linear cost of effort. Boosey et al. (2020) further study

the optimal disclosure policy in lottery contests under endogenous entry. Our paper shares one dimension of the experi- 

mental variation with Boosey et al. (2020) , namely whether the actual number of entrants is fully disclosed or concealed.

Regarding the other dimension, while Boosey et al. (2020) vary the outside option (low or high) so that the endogenous

entry probability is high or low, we change the curvature of the cost function (keeping the entry cost constant across all

treatments). The two treatments of our experiment with a linear cost (under the Disclosure or Concealment policy) are simi- 

lar to the two treatments with the low outside option in Boosey et al. (2020) . It is reassuring to note that all four treatments

confirm that the expected total effort is independent of the prevailing disclosure policy when the cost of effort is linear. 

Our paper is the first to provide insights to contest organizers on the optimal disclosure policy, when the cost of effort

is considered to be non-linear. The optimal disclosure policy varies depending on whether the organizer’s objective is to 

maximize or minimize the total effort. For example, in labor markets, an employer who aims to maximize the total effort

from job applicants, should disclose the number of applicants if the cost of applying is perceived to be concave. Interestingly,

Gee (2019) conducted a large-scale field study about online job applications via LinkedIn, and found that candidates were 

more likely to complete their applications when they can observe the number of applicants for a given job opening, which
3 Feng and Lu (2016) study a wider range of disclosure policies that allow for partial disclosure (concealment) using a Bayesian persuasion approach and 

find that partial disclosure is always sub-optimal, drawing similar conclusions to Fu et al. (2011) . Ryvkin and Drugov (2020) further generalize the results 

of Fu et al. (2011) to arbitrary tournaments and arbitrary distributions of the number of players. They also show that the optimal disclosure policy depends 

on the shape of players’ cost function in winner-take-all rank-order tournaments. 
4 The ratio-form contest success function is p i = f (x i ) / 

∑ N 
j=1 f (x j ) and H(·) = f (·) / f ′ (·) is defined as the characteristic function. 

5 While Fu et al. (2015) establish a symmetric entry-bidding equilibrium under a wide class of contest technologies, and investigate how bidding ef- 

ficiency and optimal design are affected by relevant institutional elements (e.g., the discriminatory power of the success function and prize allocation 

scheme) in a nested Tullock contest, they assume the actual number of participants is always concealed to all participants. In contrast, both Fu and 

Lu (2010) and Kaplan and Sela (2010) assume endogenous entry, however, the number of entrants is always known to all participants. 
6 Our paper is also related to the literature on auctions with entry. The experimental studies include Dyer et al. (1989) , Ivanova-Stenzel and 

Salmon (2004) , Palfrey and Pevnitskaya (2008) , Isaac et al. (2012) and Aycinena and Rentschler (2018) . For a detailed theoretical literature review on 

auctions with exogenous stochastic entry and endogenous entry, see Boosey et al. (2020) . 

148 



Q. Jiao, C. Ke and Y. Liu Journal of Economic Behavior and Organization 193 (2022) 146–160 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

seems to be in line with our findings because the marginal cost of filling online application forms is likely to be concave.

Similarly, a politician seeking to maximize campaign donations may prefer to conceal the number of donors (who expect a 

political prize for donating after the politician is elected), especially when raising additional funds becomes more expensive. 

Whether the contest organizers can take advantage the disclosure policy depends on commitment power they have. While 

the politicians’ preference for a disclosure policy may be irrelevant given lobbying activities are often regulated by law, 

companies may utilize public announcements, third-party certification, or institutional settings on online platforms to gain 

credibility while enforcing the desired disclosure policy. 

2. The model and predictions 

We consider a Tullock contest in a three-stage framework. A fixed pool of M(≥ 2) risk-neutral potential participants show 

their interest in joining the contest with a winner purse V > 0 . In the preliminary stage, the contest organizer chooses and

commits to her information-disclosure policy denoted by d ∈ { D, C} , with D and C denoting the full Disclosure policy and the

full Concealment policy, respectively. In Stage 1, after observing the rules of the contest, the potential participants simultane- 

ously decide whether or not to enter the contest. Each participating contestant pays a fixed cost � > 0 for entry. Following

Anderson and Stafford (2003) and Fu et al. (2015) , we make the regular assumption 

V 
M 

< � < V as a sufficient condition

to guarantee that potential participants enter the contest stochastically. The actual number of participants is realized and 

learnt by the organizer. This information is disclosed to the contestants if the organizer had earlier chosen to do so. In

Stage 2, N ( 1 ≤ N ≤ M ) participating contestants choose their level of effort x N = (x 1 , x 2 , . . . , x N ) to compete for V . A winner

is selected and receives V according to the Tullock (1980) contest success function. Therefore, the winning probability of a 

participating contestant i is given by 

p i,N (x i , x −i ) = 

x r 
i ∑ N 

j=1 x 
r 
j 

, if N ≥ 2 and 

N ∑ 

j=1 

x r j > 0 . (1) 

By exerting an effort of x i , contestant i incurs a cost of c ( x i ) = x α
i 

, with α > 0 . The parameter r ∈ (0 , r ] ⊂ (0 , α M 

M−1 ] con-

ventionally represents the discriminatory power of the selection mechanism, with r as the upper limit imposed to guarantee 

the existence of a pure-strategy equilibrium effort. A higher r indicates that one’s win depends more on his level of effort

than on other noisy factors. When there is only one participant entering, he automatically receives the prize V regardless 

of his level of effort. If more than one contestant enters, but all of them make zero effort, the winner is randomly chosen

from the pool of participating contestants. In the case when nobody enters, the organizer withdraws the prize. 

Note that given the number of participating contestants, our model with non-linear cost of effort is isomorphic to a 

contest with linear cost and appropriately adjusted discriminatory power examined by Fu et al. (2011) . Let y i = x α
i 

be the

expenditure of participant i and let f ( y i ) = y 
r 
α
i 

. Then the ( N-player) contest can be framed in terms of expenditure, with

contest success function 

p i,N (y i , y −i ) = 

y 
r 
α

i ∑ N 
j=1 y 

r 
α

j 

, if N ≥ 2 and 

N ∑ 

j=1 

y 
r 
α

j 
> 0 . 

The log-concavity of function f ( y i ) , together with the discriminatory power r 
α ∈ (0 , M 

M−1 ] guarantee the existence and

uniqueness of symmetric pure strategy equilibrium in the contest stage. 

When policy D is implemented , all contestants know N before deciding on their level of effort. The two-st age subgame

boils down to a standard symmetric N-player contest (in Stage 2) with endogenous entry (in Stage 1). Whenever N ≥ 2 , each

participant i chooses his level of effort x i to maximize his expected payoff

πi = p i,N (x i , x −i ) V − x αi , (2) 

which is equivalent to choosing expenditure y i to maximize 

πi = p i,N (y i , y −i ) V − y i . 

As shown by Fu et al. (2011) , with characteristic function H ( y ) ≡ f ( y ) 

f 
′ 
( y ) 

, the corresponding symmetric pure-strategy 

equilibrium expenditure is y ∗
N 

= 

N−1 
N 2 

rV 
α . Therefore, the symmetric pure-strategy Nash equilibrium effort can be written as 

x ∗
N 

= 

(
N−1 
N 2 

rV 
α

) 1 
α , which leads to an expected equilibrium payoff of π ∗

N 
= 

V 
N 

(
1 − N−1 

N 
r 
α

)
. 7 

Following the standard argument for games with endogenous entry ( Levin and Smith, 1994 ), each contestant participates 

if and only if his expected payoff offsets the entry cost. Hence, the unique symmetric subgame perfect equilibrium entry 
7 This symmetric pure-strategy Nash equilibrium can also be obtained by using the standard technique, we relegate the details to Appendix B. 
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probability q ∗
D 

∈ (0 , 1) in Stage 1 should solve the following equation: 8 

M ∑ 

N=1 

C N−1 
M−1 q 

∗N−1 
D (1 − q ∗D ) 

M−N π ∗
N = �, (3) 

where C N−1 
M−1 

q ∗N−1 
D 

(1 − q ∗D ) 
M−N π ∗

N is the expected payoff of a representative participant who enters the contest, while another 

N − 1 contestants enter at the same time. 

Given the equilibrium entry probability ( q ∗
D 

), the expected total effort ( T E D ) is given by 

T E ∗D (q ∗D ) = Mq ∗D 

M ∑ 

N=1 

C N−1 
M−1 q 

∗N−1 
D (1 − q ∗D ) 

M−N 
(

N − 1 

N 

2 

rV 

α

) 1 
α

. (4) 

When policy C is implemented , N remains unknown to all participants in the two-stage subgame (after the prelimi- 

nary stage). Therefore, no proper subgame exists after the entry stage and the subgame perfect equilibrium does not bite. 

Each participant chooses his level of effort after entry based on his (rational) belief about others’ entry strategies, without 

knowing the actual number of entrants. 

In this case, the strategy of each potential contestant is given by a pair (q i,C , x i,C ) , where q i,C is the entry probability of

a potential participant i and x i,C is his effort upon entry. The symmetric equilibrium has been derived by Fu et al. (2015) ,

which can be summarized as follows: there exists a unique symmetric perfect Bayesian equilibrium, in which each potential 

contestant enters with a probability q ∗
C 

that uniquely solves the following equation: 

M ∑ 

N=1 

C N−1 
M−1 q 

∗N−1 
C (1 − q ∗C ) 

M−N V 

N 

(
1 − N − 1 

N 

r 

α

)
= � , (5) 

and (upon entry) chooses a level of effort x ∗
C 

given by x ∗
C 

= [ 

M ∑ 

N=1 

C N−1 
M−1 

q ∗N−1 
C 

(1 − q ∗
C 
) M−N N−1 

N 2 
rV 
α ] 

1 
α . 9 The expected total effort

( T E C ) elicited by the contest organizer is 

T E ∗C ( q 
∗
C ) = Mq ∗C x 

∗
C 

= Mq ∗C [ 
M ∑ 

N=1 

C N−1 
M−1 q 

∗N−1 
C (1 − q ∗C ) 

M−N N − 1 

N 

2 

rV 

α
] 

1 
α . (6) 

We are now able to compare the two equilibrium outcomes to explore the optimal disclosure policy. First, by directly 

comparing Equations (3) and (5), which are essentially the same, we can derive the following prediction. 

Prediction 1 In a Tullock contest with costly endogenous entry, the equilibrium entry probability of the potential contestants 

does not depend on the disclosure policy, i.e., q ∗D = q ∗C = q ∗. 

Given that the entry probability should not vary with the disclosure policy, the comparative statics on total effort is the

same as when entry is stochastic and exogenous. As shown by Fu et al. (2011) in Theorem 1(b), if H ( y ) is linear, expected

equilibrium expenditure y is invariant to the disclosure rule. In our model, H ( y ) ≡ f ( y ) 

f 
′ 
( y ) 

= 

α
r y is indeed linear. Applying the

inverse of effort-to-expenditure transformation x ∗ = ( y ∗) 
1 
α , the expected total effort corresponding to the expenditure level 

must vary with the disclosure policy, in a direction that depends on whether α ≷ 1 . According to Jensen’s inequality, by

further comparing the solutions of Equations (4) and (6), we can summarize the following. 

Prediction 2 In a Tullock contest with costly endogenous entry: (a) concealing the actual number of contestants leads to an

expected total effort that is strictly greater (lower) than disclosing the actual number of contestants if and only if the cost function

is strictly convex (concave); (b) (Disclosure Irrelevance) the expected total effort is independent of the prevailing disclosure policy 

when the cost function is linear. That is, T E ∗C � T E ∗D if and only if α � 1 . 

Similar to Fu et al. (2011) , the intuition behind this prediction is the following: Under the Disclosure policy, the

equilibrium effort of each contestant depends on the cost function ( α) and the number of contestants ( N), given that

x ∗N = 

(
N−1 
N 2 

rV 
α

) 1 
α . For a given α, a contestant exerts more effort when N is small, while he exerts less effort when N is

large. When the cost function is concave, the equilibrium effort is convex with respect to N−1 
N 2 

rV 
α . Consequently, effort ex- 

ertion becomes increasingly elastic when N increases, such that a contestant is more sensitive to any decrease in N (while 

stepping up effort) than any increase in N (while decreasing effort). Theref ore, each contest ant, on average, exerts more 

effort when N is disclosed than when it is concealed. On the contrary, when the cost function is convex, the equilibrium

effort becomes concave with respect to N−1 
2 

rV 
α . When N is disclosed, a contestant responds more sensitively to an increase 
N 

8 We recognize that there may exist asymmetric equilibrium entry strategies, i.e., some contestants may participate with a positive probability, while 

others may never enter. However, given that participants are ex-ante symmetric, following the mainstream literature, we only focus on the symmetric 

equilibrium in the main text. Detailed discussions about multiple equilibria and asymmetric equilibrium strategies are relegated to Appendix B. 
9 We also relegate the detailed proof of the unique symmetric equilibrium to Appendix B. 
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Table 1 

Treatment design and theoretical predictions. 

Treatment Entry Rate Individual Effort TE TCE TRD 

N Value 

Concave Disclosed 2/3 0.42 N = 0 0.00 181.98 30.13 0.80 

N = 1 0.00 

N = 2 229.27 

N = 3 192.45 

Concealed 2/3 0.42 - 117.97 147.79 30.13 0.80 

Linear Disclosed 1 0.50 N = 0 0.00 27.36 27.36 0.88 

N = 1 0.00 

N = 2 25.00 

N = 3 22.22 

Concealed 1 0.50 - 18.12 27.36 27.36 0.88 

Convex Disclosed 4/3 0.56 N = 0 0.00 11.80 24.29 0.91 

N = 1 0.00 

N = 2 9.01 

N = 3 8.25 

Concealed 4/3 0.56 - 7.42 12.46 24.29 0.91 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

in N (by lowering effort) than to a decrease in N (by stepping up effort). As a result, his overall expected effort is higher

when the number of contestants is concealed. 10 

Another inference that directly follows from Prediction 1 is that the total cost of effort and thus the rent-dissipation rate

are also insensitive to the disclosure policy. As each potential contestant receives zero net expected payoff in equilibrium, 

the total cost of effort of all participants should be exactly equal to the total prize value earned by all potential participants

minus the total cost of entry. When all contestants enter with the same probability q ∗, the expected total prize earned by

all potential participants is [1 − (1 − q ∗) M ] V , while the expected total cost of entry is Mq ∗�. 11 Therefore, the total cost of

effort T CE should be the same under both policies 

T CE D = T CE C 

= [1 − (1 − q ∗) M ] V − Mq ∗�. (7) 

The total rent-dissipation rate can be calculated as the ratio of the sum of total cost of effort and total entry cost to the

prize value, therefore the two policies will lead to the same level of rent dissipation. We have the following prediction. 

Prediction 3 In a Tullock contest with costly endogenous entry, both the (expected) total cost of effort and the rent dissipation

rate are the same under both disclosure policies. 

3. Experimental design and procedure 

We design a 2 × 3 between-subjects experiment that closely follows the theoretical framework described in Section 2 . 

In one dimension, we vary the disclosure policy, i.e., whether the actual number of contestants ( N) is disclosed after the

entry stage. In the other dimension, we set the curvature of the cost of effort function to be concave ( α= 2/3), linear ( α= 1),

or convex ( α= 4/3). We use a lottery contest success function (i.e., r = 1 ) to make the winning probabilities easier for the

experimental participants to understand. Table 1 summarizes this 2 × 3 design, with treatment labels, the predicted values of 

entry rate, individual effort, tot al effort (TE), tot al cost of effort (TCE), and total rent dissipation rate (TRD) in each treatment.

We conducted two sessions for each treatment with 24 participants per session (except the two sessions for Conceal 1 ,

involving 18 and 30 participants respectively). 

Printed instructions (See Appendix A for an example) were provided and read aloud by the experimenter before the start 

of each experimental session. To further ensure that all participants understood the instructions correctly, at the beginning 

of each session they were asked to take a quiz based on the experimental instructions. The participants could only continue

if they answered each question correctly. To increase the number of independent observations, participants (in each session) 

were first randomly assigned to two (sub)session groups, which remained the same for the entire experiment. The size of 

the (sub)session groups was 9, 12, or 15 respectively. Any subsequent random matching was conducted at this (sub)session 

level. 

Each session ran for 25 rounds. At the beginning of each round, the participants were randomly assigned to a group of

three players, each receiving 80 experimental currency (EC) units as their initial endowment. In Stage 1, the participants 

simultaneously decided whether to enter. An entry fee of 40 EC was deducted from their initial endowment if they decided
10 In Appendix B, We also provide more detailed calculations and graphical representations for a simplest two-player case (i.e., M = 2 ) to further illustrate 

how the comparisons described in Prediction 2 can be simply proved using Jensen’s Inequality. 
11 Note that (1 − q ∗) M is the probability that nobody enters the contest, thus the prize is kept by the organizer, and 1 − (1 − q ∗) M is the probability that 

the prize is taken by one participant. 
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Table 2 

Average entry rates and equilibrium predictions. 

Concave Linear Convex 

Equ. Rd.1–25 Equ. Rd.1–25 Equ. Rd.1–25 

Disclosure 0.42 0.69 0.50 0.60 0.56 0.59 

(0.46) (0.49) (0.49) 

Concealment 0.42 0.62 0.50 0.59 0.56 0.63 

(0.49) (0.49) (0.48) 

Standard deviations are reported in brackets. The columns labeled “Equ.” provide the 

equilibrium entry probabilities. Columns “Rd.1-25” show the summary statistics of 

observations from all 25 rounds. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

to enter. Those who did not enter kept their 80 EC as their payoff for the round, and were not allowed to participate in

Stage 2. After all participants made their entry decisions, the actual number of entrants ( N) was revealed (concealed) to all

participants in the disclosed (concealed) treatments, including those who did not enter. 12 In Stage 2, all entrants chose their

level of effort, x , to compete in the contest with a single prize worth 100 EC. Their level of effort was then converted into

cost and deducted from their remaining endowment (i.e., 40 EC). The participants were given a table listing all available

levels of effort (and their corresponding cost), as well as a graph showing the curvature of the cost function. Depending on

the cost function used in the treatment, the range of effort levels varied and was bounded by the remaining endowment

after entry fee is deducted (i.e., 40 EC). 13 

After all of the entrants made their effort choices, a winner was randomly selected from each contest group according 

to the lottery contest success function. An animated lottery wheel was used to show the process of the random draw.

Once a winner was determined, all group members received full feedback information, including all group members’ entry 

and effort choices, their corresponding winning probabilities, the outcome of the random draw, and their own payoff for this 

round. One of the 25 rounds was then randomly chosen by the computer at the end of each session for payment calculation.

The EC earned during selected round were converted to RMB at a rate of 3.2 EC = RMB 1. The participants earned RMB 40

on average (including RMB 15 as a show-up fee) and each session lasted approximately one hour. 14 The experiment was

programmed and run by z-Tree ( Fischbacher, 2007 ). All 288 participants were undergraduate or postgraduate students in 

Wuhan University in the winter of 2017. At the end of each experimental session, a standard questionnaire was used to

collect demographic information (such as age, sex, study major, etc.). 

4. Results 

In this section, we first compare the average entry rate, the average total effort and total cost across disclosure policies

to test the main predictions presented in Section 2 . We then examine the individual effort choices and compare them with

the equilibrium predictions. Unless otherwise specified, we always refer “treatment effect” to the comparison between the 

Disclosed treatment and the Concealed treatment under the same cost-of-effort function. 

4.1. Entry rate 

Table 2 summarizes the average entry rates (with standard deviations in brackets) for each treatment, in contrast with 

their corresponding equilibrium predictions. The average entry rates are generally higher than the equilibrium predictions. 

When the cost function is concave, given a predicted entry probability of 42%, over-entry is more prominent (69% and 62%

under the Disclosure and Concealment , respectively). When the cost of effort is linear, over-entry is moderate (60% and 59%

against 50% in the predictions). When the cost function is convex, over-entry is the lowest (59% and 63% against 56% in the

predictions). 

We further use regression analysis with multi-level mixed-effects models to control for the random effects at the 

(sub)session and individual levels. Both linear and logistic regressions are presented in Table 3 . The average entry prob-

abilities are not significantly different across the Disclosure and the Concealment policies for all cost structures (see the 

coefficients of the treatment dummy “Concealed” in columns 2 to 4). Over-entry is slightly corrected from rounds 1–13 to 

rounds 14–25 in both treatments with a concave cost when over-entry is the greatest (see the coefficient for “2nd_half” in 

column 5). After controlling for the learning effect, the treatment effect remains insignificant under all cost structures. These 

results on entry behavior remain unchanged in Model 3 when we add control variables and in Model 4 when multi-level

mixed-effects logistic regressions are used. 15 Similar to the previous studies, our data also suggest that those who claimed 
12 By informing those who did not enter, we kept information and learning relatively symmetric between participating and non-participating players. 
13 This corresponds to a range of effort levels from 0 to 40 when the cost function is linear, 0 to 253 when it is concave, and 0 to 15.9 when it is convex. 

We allowed participants to enter decimal points in their effort choices in all treatments so that the coarseness of the strategy space is more comparable 

across treatments. 
14 This average payment was equivalent to the hourly rate paid to a university research assistant in that region when the experiment was conducted. 
15 Neither gender nor study background significantly affects the entry behavior (see coefficients for the “Male” and “Major” dummies in Table 3 . 
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Table 3 

Entry behavior: Regression analysis. 

Mixed Linear Regression Mixed Logit Regression 

Model 1 Model 2 Model 3 Model 4 

VARIABLES Concave Linear Convex Concave Linear Convex Concave Linear Convex Concave Linear Convex 

Constant (Disclosed) 0.69 ∗∗∗ 0.60 ∗∗∗ 0.59 ∗∗∗ 0.72 ∗∗∗ 0.62 ∗∗∗ 0.59 ∗∗∗ 0.34 ∗∗∗ 0.35 ∗∗∗ 0.29 ∗∗∗ −1.59 ∗ −1.05 −1.46 ∗∗

(0.05) (0.05) (0.04) (0.05) (0.05) (0.04) (0.11) (0.09) (0.09) (0.84) (0.72) (0.64) 

Concealed −0.07 −0.02 0.04 −0.07 −0.02 0.06 −0.03 −0.02 0.05 0.05 −0.32 0.26 

(0.06) (0.07) (0.06) (0.07) (0.07) (0.06) (0.06) (0.05) (0.06) (0.47) (0.43) (0.39) 

2nd_half −0.06 ∗∗∗ −0.03 −0.01 −0.05 ∗∗ −0.03 −0.01 −0.36 ∗∗ −0.20 −0.06 

(0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.16) (0.16) (0.15) 

Concealed X 2nd_half −0.00 0.00 −0.04 −0.00 0.01 −0.03 −0.08 0.12 −0.18 

(0.03) (0.03) (0.03) (0.03) (0.03) (0.03) (0.24) (0.23) (0.21) 

Risk 0.06 ∗∗∗ 0.07 ∗∗∗ 0.07 ∗∗∗ 0.50 ∗∗∗ 0.53 ∗∗∗ 0.43 ∗∗∗

(0.01) (0.01) (0.011) (0.10) (0.09) (0.08) 

Male −0.03 −0.06 −0.01 −0.03 −0.39 0.18 

(0.06) (0.05) (0.05) (0.48) (0.41) (0.33) 

Win_t-1 0.12 ∗∗∗ 0.14 ∗∗∗ 0.12 ∗∗∗ 0.94 ∗∗∗ 0.93 ∗∗∗ 0.79 ∗∗∗

(0.02) (0.02) (0.02) (0.15) (0.13) (0.13) 

Major 0.03 −0.10 −0.03 0.18 −0.77 −0.13 

(0.07) (0.07) (0.07) (0.56) (0.54) (0.49) 

σ 2 
(sub) session 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.06 0.06 

0.00 0.00 0.00 0.00 0.00 0.00 (0.00) (0.00) (0.00) (0.00) (0.18) (0.14) 

σ 2 
indi v idual 

0.95 0.98 0.08 0.948 0.984 0.084 0.07 0.05 0.05 4.17 2.94 2.04 

(0.01) (0.15) (0.13) (0.01) (0.02) (0.13) (0.01) (0.01) (0.01) (0.88) (0.65) (0.44) 

Observations 2400 2400 2400 2400 2400 2400 2400 2400 2400 2304 2304 2304 

Number of groups 8 8 8 8 8 8 8 8 8 8 8 8 

We run multi-level mixed-effects regressions on binary entry choices as a function of the treatment dummy (“Concealed”) in Model 1, controlling for the 

random effects at both the individual and the (sub)session levels. The Disclosed treatment under each cost structure is used as the baseline category. In 

Model 2, we add a time-specific dummy variable (2nd_half) to identify learning from rounds 1–13 to rounds 14–25, and further add control variables that 

may affect the participants entry decisions in Model 3. In model 4, we provide logistic regressions as a robustness check. “Risk” is a self-reported measure 

of willingness to take risks in everyday life, which takes integers between 0 and 10, with 0 being “Not willing to take risks at all” and 10 being “Very 

willing to take risks.” “Win t−1 ” is a binary variable that is equal to 1 if the participant won in the previous round, and 0 otherwise. “Major” is a dummy 

variable that equals to 0 for participants who study science, engineering, mathematics or economics, and 1 for the remaining areas (e.g., arts, history, 

literature, or law). All standard errors are reported in brackets. Stars indicate the significance level (i.e., ∗∗ p < 0 . 05 , ∗∗∗ p < 0 . 01 ). 

 

 

 

 

 

 

 

 

 

 

to be more risk-loving entered more frequently, and those who won in the previous round were more likely to join the

contest in the next round. 

We then test the estimated average entry rates against their corresponding equilibrium predictions to establish the sig- 

nificance of the differences between the actual entry probabilities and the equilibrium predictions. Over-entry is significant 

in all treatments with the concave cost function at the 1% level even if we only examine the entry choices in rounds 14–25,

but not significant at the conventional 5% level in other treatments with a linear or convex cost. 16 

Result 1 The entry behavior of potential participants is largely invariant to the disclosure policies, whether the cost of effort

is concave, linear, or convex. (supporting Prediction 1) 

4.2. Total effort and total cost 

After examining the average entry rates across the disclosure polices, we compare the average total effort to identify the 

optimal disclosure policy a contest organizer should adopt. The average total effort, which is calculated as the aggregate ef- 

fort made by each three-player contest group averaged across all contest groups within a sub(session) in one round, is taken

as the unit of observation in this part of the analysis. Figure 1 a presents the summary statistics of the average total effort.

The corresponding equilibrium predictions are also represented by the dashed lines. Figure 1 a suggests that the differences 

between the Disclosure and Concealment policies follow the direction of the theoretical predictions, although the average 

total effort is generally higher than the equilibrium predictions. When the cost function is concave, the average total effort 

is 18% higher under the Disclosure policy than under the Concealment policy (336.24 vs. 284.35). In contrast, when the cost 

of effort is convex, the average total effort in the disclosed treatment is 13% lower than that of the concealed treatment

(16.08 vs. 18.57). When the cost function is linear, the difference between treatments is the smallest of all (40.93 vs. 42.32).

We again estimate the mixed-effects models to control for the random effects at the (sub)session level, and thereby to 

further test the significance of the treatment effects. The regression results are presented in Table 4 . In the concave- and

linear-cost cases, the regression results further confirm what we observe in Fig. 1 a: the average total effort is significantly

lower under the Concealment policy when the cost function is concave ( p = 0 . 036 ), and is not significantly different across
16 The p values are 0.00 and 0.00 for the concave case, 0.07 and 0.14 for the linear case, and 0.58 and 0.35 for the convex case, based on Wald tests. 
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Fig. 1. A summary of the average total effort and the average total cost, in contrast to their equilibrium predictions. 

Table 4 

Total Effort: Mixed-effects Models. 

Model 1 Model 2 

Concave Linear Convex Concave Linear Convex 

Constant (Disclosed) 336.24 ∗∗∗ 40.93 ∗∗∗ 16.08 ∗∗∗ 357.09 ∗∗∗ 45.12 ∗∗∗ 16.22 ∗∗∗

(17.46) (2.13) (1.40) (18.74) (2.43) (1.49) 

Concealed −51.89 ∗∗ 1.38 2.49 −53.61 ∗∗ −0.18 3.09 

(24.70) (3.01) (1.98) (26.51) (3.44) (2.11) 

2nd_half −43.44 ∗∗ −8.73 ∗∗∗ −0.31 

(14.17) (2.46) (1.06) 

Concealed × 2nd_half 3.59 3.25 −1.27 

(20.05) (3.48) (1.50) 

σ 2 
(sub) session 

1,001.42 11.49 6.73 1,019.49 12.04 6.74 

(610.39) (9.07) (3.93) (610.39) (9.07) (3.93) 

Obs 200 200 200 200 200 200 

No. of groups 8 8 8 8 8 8 

We compare the average total effort across disclosure policies by regressing the average total effort on the disclosure policy 

dummy (“Concealed”) for different cost functions separately in Model 1. In Model 2, we add a time-specific dummy (2nd_half) 

that is equal to 1 for rounds 14–25. We use mixed-effects regressions to control for the random effects at the (sub)session 

level. Stars indicate the significance level ( ∗∗ p < 0 . 05 , ∗∗∗ p < 0 . 01 ). 

 

 

 

 

 

 

 

 

 

 

 

disclosure policies when the cost function is linear ( p = 0 . 70 ). In the convex-cost case, although the direction of the effect is

in line with the theoretical prediction, it is not statistically significant ( p = 0 . 21 ). These results remain consistent even after

we add a time dummy to control for the potential learning effect (see Model 2 in Table 4 ). 

Result 2 In line with the theoretical prediction, the average total effort is significantly higher under the Disclosure policy than 

under the Concealment policy when the cost of effort function is concave, and it is insensitive to the disclosure policy when the

cost of effort is linear. The treatment difference also follows the direction predicted by the theory when the cost function is convex,

although it is not statistically significant. (partially supporting Prediction 2) 

Note that Prediction 3 also states that the total cost of effort should be invariant to the disclosure policies, and the same

applies to the rent-dissipation rate. Similarly, We take the average total cost (of effort) that is calculated in the same way as

the average total effort, as one unit of observation. Figure 1 b summarizes the average total cost of effort for each treatment.

The solid lines represent the corresponding equilibrium predictions. In general, moderate levels of over-dissipation occur 

across all treatments (in line with the higher than equilibrium levels of total effort), yet the treatment effects seem small

for all cost structures. 

Following the same investigation logic as the average total effort, we run mixed-effects regressions, controlling for ran- 

dom effects at the (sub)session group level for the average total cost. The results are presented in Table 5 . In line with the

theoretical predictions, we find that the average total costs are not significantly different across disclosure policies when 

the cost function is linear and convex ( p = 0 . 46 and p = 0 . 28 , respectively). When the cost function is concave, the differ-

ence is marginally significant in Model 1 ( p = 0 . 065 ). However, after controlling for the learning effect by adding a time-
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Table 5 

Total Cost: Mixed-effects Models. 

Model 1 Model 2 

VARIABLES Concave Linear Convex Concave Linear Convex 

Constant (Disclosed) 58.34 ∗∗∗ 40.93 ∗∗∗ 37.01 ∗∗∗ 62.02 ∗∗∗ 45.12 ∗∗∗ 37.21 ∗∗∗

(2.68) (2.13) (3.30) (2.90) (2.43) (3.52) 

Concealed −6.99 1.38 5.04 −7.26 −0.18 6.71 

(3.79) (3.01) (4.66) (4.10) (3.44) (4.97) 

2nd_half −7.66 ∗∗∗ −8.73 ∗∗∗ −0.41 

(2.33) (2.46) (2.54) 

Conceal × 2nd_half 0.57 3.25 −3.48 

(3.29) (3.49) (3.59) 

σ 2 
(sub) session 

22.72 11.49 36.99 23.29 12.04 37.07 

(14.36) (9.08) (21.77) (14.36) (9.07) (21.77) 

Obs 200 200 200 200 200 200 

No. of sub-sessions 8 8 8 8 8 8 

We compare the average total cost across disclosure policies by regressing the average total cost on a 

disclosure policy dummy (“Concealed”) for each cost function separately in Model 1. In Model 2, we 

add a time-specific dummy (2nd_half) equal to 1 for rounds 14–25. We use mixed-effects regressions to 

control for the random effects at the (sub)session level. Stars indicate the significance level ( ∗∗ p < 0 . 05 , 
∗∗∗ p < 0 . 01 ). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

specific dummy in Model 2, we find that the difference becomes insignificant in rounds 14–25 at all conventional levels 

( p = 0 . 107 ). 17 

Result 3 In line with Prediction 3, the average total cost is invariant to the disclosure policies under all cost structures after

some learning from the early rounds (1–13). (Supporting Prediction 3) 

The total cost spent by the contestants is essentially borne by the contest organizer, as the total cost of effort spent by

the participants offsets the prize value provided by the organizer. Integrating the results on the average total effort and the

average total cost, our study suggests that if the objective of a contest organizer is to maximize or minimize the total effort

while maintaining the cost of the contest, she should select the disclosure policy after carefully considering the nature of the

effort-cost function. When the cost of effort is expected to be concave, fully disclosing the actual number of contestants is

expected to be more effective in eliciting higher total effort. Naturally, if the objective of the contest organizer is to minimize

the expected total effort, the optimal policy is the opposite. When the cost of effort is expected to be linear, the disclosure

policy is irrelevant, as the expected total effort and the expected total cost are both unresponsive to the disclosure policy.

When the cost of effort is expected to be convex, our data may lack power in detecting the treatment effect, but ignoring

the predicted differences across disclosure policies based on our theoretical model may be sub-optimal. 

4.3. Individual effort 

The participants in the Disclosed and Concealed treatments make their effort choices under different levels of information. 

In the Disclosed treatments, they know how many people they are competing against, while in the Concealed treatments, 

this information is not available, thus they must form a belief on the entry strategy of other people. In the former case,

the equilibrium effort choices change with the actual number of entrants. We first compare the individual effort s exerted 

in different cases (i.e., N = 1 , 2, or 3) in the Disclosed treatments to see if they follow the equilibrium predictions. In the

latter case, not knowing the actual number of entrants, the contestants are predicted to make the same level of effort across

different sizes of contests. We then check if this is true and also compare the actual effort choices with the corresponding

equilibrium predictions. 

Table 6 reports the average individual effort s in each of the three Disclosed treatments, conditional on the actual num-

ber of entrants, in contrast with the corresponding equilibrium predictions. When the participants enter the contest alone 

( N = 1 ), they should make 0 effort in all three treatments, as the prize is automatically awarded to them. The summary

statistics show that some participants still make positive efforts, which may be driven by some confused participants not 

fully understanding the rule of the contest at the beginning. Multi-level mixed-effects regressions using data from rounds 

14–25 to study the choice of the participants after learning show that the average effort in this case is noisy and not signif-

icantly different from 0 (See Table 7 , row “N = 1 ”). 

When more than one contestant enters the contest, their effort choices are in line with the equilibrium predictions when 

the cost function is linear (comparing columns 4 and 5 in Table 6 ). Similarly, mixed-effects regressions using data from the

last 12 rounds provide estimates that are not significantly different from the equilibrium predictions (see Table 7 column 3).

When the cost function is non-linear, we observe that the individual effort is slightly lower than the equilibrium pre- 

dictions when the cost function is concave (197.48 vs. 229.27 when N = 2 , and 156.05 vs. 192.45 when N = 3 ). However,
17 To test the difference in rounds 14–25, we conduct a post-estimation test by comparing the sum of the regression coefficients of the treatment dummy 

(Concealed) and the interaction term (Concealed × 2nd_half) with zero. 
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Table 6 

Individual Effort in Disclosed Treatments. 

Concave Linear Convex 

Equ. Rd.1–25 Equ. Rd.1–25 Equ. Rd.1–25 

N = 1 0 23.33 0 5.02 0 0.86 

(70.62) (11.85) (3.19) 

N = 2 229.27 197.48 25 26.76 9.01 11.64 

(63.33) (10.39) (3.95) 

N = 3 192.45 156.05 22.22 24.33 8.25 9.91 

(79.11) (12.06) (4.59) 

Standard deviations are reported in brackets. The columns labeled “Equ.” provide 

the equilibrium predictions. “Rd.1-25” show the summary statistics of observa- 

tions from all 25 rounds. 

Table 7 

Individual Effort in Disclosed Treatments: Rounds 14–25. 

Mixed-effects model Tobit model 

Concave Linear Convex Concave Linear Convex 

N = 1 12.73 1.42 0.73 

(16.17) (1.79) (0.58) 

N = 2 198.80 ∗∗ 25.93 12.07 ∗∗∗ 242.60 28.49 13.22 ∗∗∗

(13.10) (1.54) (0.50) (29.92) (2.85) (0.80) 

N = 3 157.00 ∗∗∗ 22.63 9.57 ∗∗ 183.90 24.56 10.34 ∗∗

(13.01) (1.64) (0.51) (29.62) (2.92) (0.81) 

σ 2 
(sub) session 

450.65 4.06 0.00 2810 16.64 0.00 

(452.61) (6.28) (0.00) (2483) (22.61) (0.00) 

σ 2 
indi v idual 

1,506.05 35.90 7.57 5062 125.8 22.28 

(448.04) (11.48) (1.94) (1626) (38.92) (6.01) 

Censored [10, 113] [4, 60] [3, 65] 

Total Obs. 379 340 337 344 278 274 

“Censored” represents the number of observations that are left-censored (first number in brack- 

ets) and right-censored (second number in brackets). We control for the random effects at the 

individual level ( σ 2 
indi v idual 

) and the (sub)session level ( σ 2 
(sub) session 

) in the mixed-effects and To- 

bit models. Note that stars indicate the significance level of the estimated coefficients against 

their corresponding theoretical predictions using Wald tests ( ∗∗ p < 0 . 05 , ∗∗∗ p < 0 . 01 ). Standard 

errors are reported in brackets. 

 

 

 

 

 

 

when the cost function is convex, the average effort is slightly above the equilibrium predictions (11.64 vs. 9.01 when N = 2 ,

and 9.91 vs. 8.24 when N = 3 ). These results suggest that the effort choices respond to the curvature of the cost function

in the right direction, although the reactions are slightly smaller than those suggested by the theoretical point predictions. 

Table 7 (columns 2 and 4) shows that these deviations from the equilibrium predictions are statistically significant when 

using mixed-effects regressions. 

The histograms of the individual effort choices presented in Fig. 2 suggest that the effort choices are heterogeneous 

and often limited by the maximum effort available to the participants. For example, approximately 40% of the choices are 

distributed at the upper bound (253) when the cost function is concave, and the actual number of contestants is two. In

other cases, between 25% and 30% of the choices are distributed at the upper bound. 18 To take into account the impact of the

upper bounds on effort choices, we also estimate the average individual effort in each case with multi-level mixed-effects 

Tobit models, using data from rounds 14–25. The results are presented in Table 7 (columns 5 to 7). 19 As Table 7 shows, the

effort choices are not significantly different from the equilibrium predictions when the cost function is concave or linear, 

while the level of effort remains higher than the equilibrium predictions when the cost function is convex. 

Result 4 The participants’ individual effort largely follows the equilibrium predictions when N is disclosed, although the par- 

ticipants slightly under-react to the curvature of the cost function when the cost of effort is non-linear, especially when it is

convex. 

Table 8 summarizes the average individual effort, with the standard deviations for each Concealed treatment given in 

brackets. The average individual effort is generally higher than the equilibrium predictions in all treatments when the actual 

number of contestants is concealed. To compare the individual effort with the equilibrium predictions, we estimate the 

average individual effort using multi-level mixed-effects models, controlling for the random effects at the individual and 
18 See Appendix C.6 for individual effort plots (for each N ) by treatment. 
19 All of the regressions using Tobit models are right-censored at the maximum effort level available to the participants, and left-censored at the minimum 

level of 0. The case N = 1 is left out because most participants choose 0 when nobody competes with them. 
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Fig. 2. Histograms of individual effort in Disclosed treatments. 

Table 8 

Individual Effort in Concealed Treatments. 

Concave Linear Convex 

Equ. Rd.1-25 Equ. Rd.1-25 Equ. Rd.1-25 

117.97 154.12 18.12 23.78 7.42 9.88 

(71.54) (12.11) (4.59) 

Standard deviations are reported in brackets. The columns labeled “Equ.” provide the equilibrium 

predictions. “Rd.1-25” show the summary statistics of observations from all 25 rounds. 

 

 

 

 

(sub)session levels. The estimates are significantly higher than the equilibrium predictions in all three treatments ( p values 

are 0.00, 0.05, and 0.00, see Fig. 3 for the estimated values). 20 

Under the Concealment policy, the participants make effort decisions without knowing the actual number of entrants. 

They should choose an effort level that maximizes their expected payoff, taking into account the probability distribution 

of the potential number of opponents they will face. 21 As the actual entry rates are slightly higher than the equilibrium

entry rates, the probability distribution of the actual number of opponents they will face also deviates from the equilibrium 

predictions. Thus, the over-exertion observed under the Concealment policy may be a rational reaction to over-entry. 

In our experiment, the participants received full feedback at the end of each round, irrespective of whether they entered 

the contest. As a result, the participants should have a good perception of the actual average entry rates. We conjecture

that the over-exertion observed may reflect the best responses of participants to their belief/perception of the actual entry 

behavior. To further test this conjecture, we calculate the payoff-maximizing effort based on the observed average entry 

rates using data from rounds 14–25. As shown in Fig. 3 , the estimated average individual effort in the concave and linear

treatments (155.60 and 22.85) is not significantly different from the optimal effort choices predicted by the actual average 

entry rates and indicated by the blue dashed lines (160.44 and 19.56, p = 0.69 and p = 0 . 18 , respectively). However, when
20 The full regression results using data from rounds 14–25 can be found in Appendix C.1. The estimated coefficients are similar if we use data from all 

rounds. 
21 We draw the histogram of individual effort in concealment treatments conditional on cost function and the number of entrants. Participants effort 

choice does not vary with the number of entrants. See Appendix C for the histograms. 
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Fig. 3. Individual Effort in Concealed Treatments: Rounds 14–25. Note: The red solid lines represent the equilibrium predictions and the blue dotted lines 

represent the predicted optimal individual effort, t aking the actual entry rates as given. The figures in brackets next to the theoretical predictions are the 

p-values of the Wald tests, which compare the estimated coefficients using multi-level mixed-effects models for rounds 14–25 (see the number at the top 

of each bar) with the predictions adjusted by over-entry.. (For interpretation of the references to colour in this figure legend, the reader is referred to the 

web version of this article.) 

 

 

 

 

 

 

the cost of effort is convex, the estimated average effort is still significantly higher than the optimal effort adjusted by

over-entry (9.76 vs. 7.63, p ≤0.01). 22 

Result 5 The participants’ individual effort is generally higher than the equilibrium predictions in all treatments when the actual 

number of contestants is concealed. However, when the over-entry behavior is taken into consideration (i.e., using the actual entry 

rates observed in the experiment in calculating the payoff-maximizing individual effort), the choices are largely consistent with 

adjusted optimal effort predictions, except that there is still significant over-exertion in effort when the cost function is convex. 

In summary, our analysis on individual effort s suggest s moderate levels of over-exertion when the cost of effort is con-

vex, contrasting the majority of the experimental evidence on contest that shows much higher levels of over-exertion. 23 

One could reasonably argue that the closer to equilibrium effort choices observed in our experiment might be driven the 

fact that the strategy space is bounded by the initial endowment assigned to the participants. 24 As is shown by the To-

bit regressions, the strategy space is particularly restrictive under the Disclosure policy when the cost of effort is concave, 

however, it restricts the effort choices to a lesser extent under the Concealment policy. Therefore, we speculate that should 

the participants be allowed to exert higher effort, the treatment difference on the expected total effort would have been 

more prominent when the cost of effort is concave. When the cost function is convex, the difference in equilibrium-effort

predictions across disclosure policies is very small, taking into account the bounded strategy space would be unlikely to 

drive the treatment effect significantly different. 25 All in all, in spite of the various deviations observed on the individual

level of choices, our finding on the treatment effect with regard to the average total effort (summarized in Result 2) remains

unchanged. 
22 Note that over-entry is minimal when the cost of effort is convex. Therefore, controlling for over-entry hardly changes the predicted optimal effort 

compared with the Nash equilibrium prediction (7.63 vs. 7.42). 
23 We have shown that the over-exertion in the concealed treatments (when the cost of effort is either linear or concave) may be driven by individuals 

best-responding to over-entries in these treatments. 
24 For example, Baik et al. (2020) provide experimental evidence on the impact of conflict budget on the intensity of conflict. 
25 The bounded strategy space is to ensure the entry cost is non-trivial and the endowment is comparable across cost structures. Obviously, restricted 

strategy space comes as its cost. 
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5. Conclusion 

In this paper, we examine theoretically and experimentally whether it is optimal for a contest organizer to disclose the 

actual number of contestants when entry is endogenous. Although previous studies suggest that the expected total effort 

made in a Tullock contest does not depend on the disclosure policy when the cost of effort is linear, we show that the

optimal disclosure policy critically depends on the convexity of the cost function when the cost of effort is non-linear, 

despite the equilibrium entry probabilities and rent dissipation rates are invariant to the disclosure policy. 

More importantly, we find that, in line with our theory, the Disclosure policy tends to elicit more total effort than the

Concealment policy when the cost function is concave, and that the total effort is neutral to the disclosure policy when

the cost function is linear. When the cost function is convex, the theory predicts that the total expected effort should be

higher under Concealment policy, and we observe a difference in the direction predicted by the theory. However, it is not

statistically significant. The lack of significant treatment difference may be attributed to two factors: first, the predicted 

treatment effect is rather small, thus it is more difficult to detect with our data; and second, we observe significant over-

exertion under both Disclosure and Concealment policies when the cost function is convex, which makes it even harder to 

detect small treatment differences. 

Our contest model is certainly too stylised to fully capture the complexity of the real-world contests. Nonetheless, it 

provides useful insights on both the positive and normative aspects of the disclosure policies. Further empirical research is 

warranted to identify the nature of the cost-of-effort function in practice when a specific real contest is concerned. Once the

nature of the cost-of-effort functions is identified, one could answer why in some circumstances the number of contestants 

is revealed, whereas in others it is concealed. In this paper, we have focused on full disclosure and full concealment policies.

Although we expect that our main results can be extended to a more general information disclosure policy framework, new 

issues related to information disclosure may arise and create additional challenges for analysis. We leave these interesting 

questions for future work. 
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