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a b s t r a c t 

This paper considers a complete bipartite conflict network model with returns to scale 

technology. We show that the impact of the returns to scale technology on agents’ equi- 

librium behaviors can be determined by two important factors: the size ratio of two coali- 

tions and the degree of local interdependencies of conflicts. We find an inverted U rela- 

tionship between the returns to scale technology and (individual and total) equilibrium 

effort s when two coalitions differ sufficiently in size and the degree of local interdepen- 

dencies of conflicts is high. Our finding suggests that an increase in the returns to scale 

technology can be beneficial in the sense that it reduces conflict intensity. 
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1. Introduction 

Conflict refers to certain form of friction or discord when the beliefs or actions of agents are in opposition. It has been

widely studied in the contest framework. 1 To the best of our knowledge, most of the classical contest-based literature

focuses on stylized models of one or more isolated and independent conflicts. However, the parties to a conflict are often

involved in more than one conflict in the same period of time. For instance, conflict in the form of war among different

opposing military alliances is probably the most important example in which agents need to simultaneously deal with

several conflicts. Leaders of different political parties are frequently involved in multiple political campaigns. Members of

different groups, which differ in ideology, religion or even race, are often unfriendly to one another and sometimes behave as
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enemies. In addition, the market competition between a large company that diversifies its product line and individual sellers

that offer different categories of products can also be analyzed using a framework of conflict networks. All the examples

above can be considered conflicts that exist within network structures. Unlike traditional models of isolated/independent

conflicts, in such conflict networks, local interdependencies between distinct conflicts can have substantial implications for

the behaviors of conflict parties and the intensity of conflicts. 

In a recent paper, Franke and Öztürk (2015) develop a model of conflict networks that captures locally interdependent

conflicts among agents. In their model, each agent is involved in several bilateral conflicts and decides simultaneously how

much to invest in each conflict. The marginal cost of investment in one conflict depends on the investments in all other

conflicts made by the agent. An agent’s probability of winning against a particular rival depends on her investment in

certain conflict-specific technology. By focusing on a specific contest model proposed by Tullock (1980) , Franke and Öztürk

(2015) provide an equilibrium analysis of two classes of conflict network structures (regular networks and complete bipartite

networks). They find that the aggregate effort in a conflict network, which they call “conflict intensity”, is affected by the

structure of networks (e.g., the number of agents, the classes of conflict networks). 

In addition to network structures, other factors can influence how parties interact with each other in conflict networks,

with the conflict technology being a particularly important one. In a general Tullock contest model, the contest technology

is measured by the degree of returns to scale. Franke and Öztürk (2015) consider a special Tullock contest, known as the

lottery contest, which exhibits constant returns to scale. However, different conflicts vary in the degree of returns to scale

in their technologies. For instance, modern high-tech wars may provide a much higher rate of return than did ancient wars.

The return on investments to influence voters tends to be the highest during the key period of national election. In the case

of market competition, modern sales modes (such as the internet, e-business and online sales) seem more effective and

provide a higher rate of return than traditional offline sales. An interesting question, therefore, is how conflict technology

affects the behavior of agents in conflict networks. Our paper makes the first attempt to address this question. 

We consider a conflict network model adapted from Franke and Öztürk (2015) by incorporating returns to scale technol-

ogy. Instead of analyzing a general network structure, we focus on one of the most classical networks: complete bipartite

conflict networks. A particular feature of this type of networks is the group size difference between two coalitions. This

asymmetric characteristic plays a key role in affecting the relationship between agents’ equilibrium behavior and returns to

scale technology. We first characterize a unique pure-strategy equilibrium, in which each agent in the same coalition exerts

the same (positive) level of effort in each bilateral conflict. We further analyze how the conflict technology affects the equi-

librium behavior of each agent. Our main finding is that as the returns to scale technology increases, conflict parties do not

necessarily invest more to win conflicts. We identify two main factors that determine the relationship between equilibrium

effort s of agent s and the returns to scale technology: the size ratio of two coalitions and the degree of local interdepen-

dencies of conflicts. When two coalitions differ sufficiently in size and the degree of local interdependencies of conflicts is

high, there exists an inverted U relationship between the equilibrium effort of each agent and the level of returns to scale.

That is, as each bilateral conflict becomes fiercer, agents tend to invest more under a low level of returns to scale but less

under a high level of returns to scale. By contrast, when the two coalitions are close in size or when the degree of local

interdependencies of conflicts is low, the equilibrium effort of each agent is positively related to the level of returns to scale.

To explain the results above, we identify two effects of conflict technology on agents’ incentives to exert effort s: a com-

petition effect and a discouragement effect. On the one hand, each agent has more incentive to exert effort as each conflict

becomes more discriminatory (competition effect). On the other hand, because of the asymmetry in group sizes and the

local interdependencies of conflicts, an agent in the smaller coalition always needs to fight with more rivals so that the

effective cost in each conflict is higher than that of any rival in the other coalition. When each conflict becomes less noisy,

an agent in the smaller coalition tends to exert less effort, since it is less likely that she will win when competing with

more rivals (discouragement effect). While these two effects work in opposite directions, the net effect would then depend

on which one dominates. When the asymmetry between the two coalitions is large, which occurs when they differ suffi-

ciently in size and the degree of local interdependencies of conflicts is high, the competition effect dominates under a low

level of returns to scale, while the discouragement effect dominates under a high level of returns to scale. This results in

an inverted U relationship between the equilibrium effort of each agent and the level of returns to scale. Otherwise, the

competition effect always dominates, implying a positive relationship between the equilibrium effort of each agent and the

level of returns to scale. 

Provided that conflict intensity is the aggregation of individual effort s, we further establish an inverted U relationship

between returns to scale technology and conflict intensity when the two coalitions differ sufficiently in size and the degree

of local interdependencies of conflicts is high. While conventional wisdom suggests that conflict intensity tends to increase

in the returns to scale technology, our findings show that the result can be reversed in complete bipartite conflict networks.

Such a non-monotonic relationship between conflict intensity and returns to scale technology may offer an explanation

for several real-world observations. For instance, although the return from winning a war in modern times is greater than

that from an ancient war, the overall conflict investments by opposing countries do not always present an increasing trend.

During the period when new sales modes were first introduced, sales staff in large companies took a positive attitude

towards such a technological shock. However, one might observe many sales persons being less enthusiastic in promoting

sales in recent years, even though sales technology continues to develop. Moreover, in many situations, the total investment

in conflict networks (i.e., conflict intensity) is considered a pure cost for the entire society. Our theory thus implies that an

increase in the returns to scale technology can be beneficial, in the sense that conflict intensity is reduced. 
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Our paper is closely related to the literature on strategic conflict analysis. While most of the existing literature examines

a single conflict between two or more parties ( Anderton and Carter, 2009; Esteban and Ray, 1999; 2008; Garfinkel and

Skaperdas, 2007; Konrad, 2009; Schelling, 1960; Smith et al., 2014 ), we allow conflict parties to simultaneously be involved

in several conflicts with different opponents. In addition to Franke and Öztürk (2015) ’s work, which we closely follow,

there are also a few recent papers on conflict networks. König et al. (2017) study how a network of military alliances

and enmities affects the intensity of a conflict from both theoretical and empirical perspectives. Xu et al. (2018) provide

a variational inequality approach to study the nexus of conflicts under a general contest technology. Cortes-Corrales and

Gorny (2018) investigate agents’ behavior in bilateral contests when valuations and efficiencies are heterogenous. Our paper

differs from these mainly in two respects. First, we consider a general Tullock conflict network model with returns to scale

technology, which takes the lottery contest with constant returns to scale in Franke and Öztürk (2015) as a special case.

Second, our main purpose is to analyze how conflict technology affects the equilibrium behavior of agents, which differs

from previous studies. 

Our study is also related to the literature on contest design. Earlier literature on contests studies the effect of contest

structure on the optimal design (e.g., Epstein et al., 2011; Fu and Lu, 2012; Gershkov et al., 2009; Giebe and Schweinzer,

2014; Gradstein and Konrad, 1999; Lu et al., 2017 ). A handful of studies allow the dissipation factor to be a primary in-

strument of the contest designer; see, for example, Che and Gale (1997, 20 0 0) , Fang (20 02) , Nti (20 04) , Wang (2010) , and

Fu et al. (2015) . While all of these assume contest designer could select the competitive mechanism to maximize effort, we

treat the dissipation factor as an exogenous value that measures the conflict technology, as it cannot be controlled by any

individual conflict party in a conflict network. Thus, unlike those works, which consider the optimal design problem, we

study the effect of the dissipation factor on the aggregate effort level. 

The remainder of the paper is organized as follows. In Section 2 , we introduce conflict network games. In Section 3 ,

we study the equilibrium behaviors and the effects of returns to scale technology in bipartite conflict network games.

Section 4 provides several discussions and extensions, and Section 5 concludes the paper. All technical proofs are collected

in Appendix A . 

2. Model 

We consider a conflict network model, adapted from Franke and Öztürk (2015) , by incorporating returns to scale tech-

nology. Instead of studying general network structures, we are interested in a particular network structure, i.e., complete

bipartite networks. In such networks, there are two opposing coalitions, in which each agent of one coalition is in conflict

with all members of the other (hostile) coalition but not in conflict with any other members of the same coalition. A com-

plete bipartite network, which has the special feature of asymmetry between two coalitions, is perhaps the most classical

type of network. Consider, for example, wars among countries in two opposing military alliances (e.g., the Allies and the

Axis in World War II) and conflicts among members of two different ideologies. Each of these two networks is asymmetric,

in the sense that the sizes of two coalitions are different. See Fig. 1 (a). In addition, complete bipartite networks also cover

as a special case the network in which one representative agent in a coalition is involved in conflicts with multiple agents

in the other coalition. One classical example of this is an empire fighting its enemies. Another example is a large company

that diversifies its product lines in the face of direct competition with many individual sellers offering different varieties of

products. See Fig. 1 (b). 

In the following, we detail the components of a (complete) bipartite conflict network game . 

Players. There are two opposing sets of risk-neutral agents (i.e., two coalitions), A and B . Let N = A ∪ B, n A = | A | , n B = | B | ,
and n = | N| . Without loss of generality, we assume that 0 < n A ≤ n B , implying that B is a larger coalition. 

Conflict network structure. In a complete bipartite conflict network, each member of coalition A is in bilateral conflicts with

all members of coalition B , and vice versa. 

Conflict technology. We model each bilateral conflict as a contest, which involves one agent in coalition A and one agent

in coalition B . The outcome of each contest depends on the simultaneous strategic behaviors (i.e., contest effort s) of the

involved agents. For each agent i in coalition A , denote her effort in the contest against her rival j in coalition B by x i j ∈ R + 
(we use R + to denote the set of all nonnegative real numbers), her effort vector against all of her rivals by an n B -dimensional

vector x i = (x i j ) j∈ B , and her total effort against all of her rivals by X i = 

∑ 

j∈ B x i j . The vector of contest effort s directed against

agent i in A by all of her rivals is denoted by x −i = (x ji ) j∈ B . The above notations are defined similarly for agents in B . 

In each contest, the agent who wins the contest obtains an exogenous prize V > 0, and the agent who loses receives

nothing. 2 The outcome of each contest is specified by a contest success function following Tullock (1980) : in the contest
2 Franke and Öztürk (2015) model each bilateral conflict as a transfer contest, in which some amount of resources is transferred from the loser to the 

winner. Our specification is strategically equivalent to their setting if the prize value is scaled up to 2 V . 
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Fig. 1. Complete bipartite network structures. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

between agent i and her rival j , when they exert effort s x ij and x ji , respectively, the winning probability of agent i is 

p(x i j , x ji ) = 

{ 

x r 
i j 

x r 
i j 
+ x r 

ji 

, if x i j + x ji > 0 , 

1 
2 
, if x i j = x ji = 0 , 

where r is a positive constant. The parameter r represents the returns to scale technology in effort spending : if r > 1 (resp.

r = 1 or r < 1), the returns to scale are increasing (resp. constant or decreasing). Throughout the paper, we assume that r ≤ 1

unless otherwise stated. This ensures the existence and uniqueness of a pure-strategy equilibrium in our model. 3 

Valuation, cost, and payoff. For each agent i , exerting effort against her rivals induces a cost C ( X i ), which is a function of the

agent’s total effort in all conflicts. For the ease of presentation, we assume that C(X i ) = 

1 
1+ α (X i ) 

1+ α, where α is a positive

constant. 4 This cost function captures the local interdependencies of conflicts in networks—an agent’s behaviors in distinct

bilateral conflicts are related. Specifically, an agent’s effort making in one bilateral conflict would impose a negative exter-

nality on her effort elicited in other conflicts, i.e., a higher effort in one bilateral conflict leads to a higher marginal cost of

effort in any other bilateral conflict. Intuitively, such a negative externality would become stronger if conflicts are more in-

terdependent. In addition, the parameter α in the cost function measures the degree of local interdependencies of conflicts:

a higher α means a higher local interdependency, which implies a stronger externality among different conflicts. Therefore,

α is a key parameter that reflects the special feature of conflict networks in which local interdependencies of conflicts ex-

ist. At the extreme, when α = 0 , the conflict network model becomes identical to a traditional contest model with several

independent conflicts. 

The expected payoff of each agent is assumed to be additively separable in the costs and expected prizes of all involved

contests. In the conflict network, when the agents’ strategy profile is x = ( x k ) k ∈ N , the expected payoff of agent i in coalition

A is 

u i ( x ) = u i ( x i , x −i ) = V ·
∑ 

j∈ B 
p(x i j , x ji ) − C(X i ) , 
3 In Section 4.3 , we discuss the case with increasing returns to scale, where a symmetric pure-strategy equilibrium may fail to exist. 
4 As in Franke and Öztürk (2015) , we assume that the cost function is the same for all agents. We show in an extension that our main results continue 

to hold when allowing for cost asymmetry between agents; see Section 4.1 . We also show that our main results of the effect of returns to scale technology 

on equilibrium effort s continue to hold for a general cost function C ( ·); see Section 4.2 . 
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and the expected payoff of agent j in coalition B is 

u j ( x ) = u j ( x j , x − j ) = V ·
∑ 

i ∈ A 
p(x ji , x i j ) − C(X j ) . 

3. Equilibrium analysis 

In this section, we first characterize the unique pure-strategy Nash equilibrium in the conflict network model and then

analyze how agents’ equilibrium behaviors can be affected by returns to scale technology. 

3.1. Equilibrium characterization 

Define the size ratio of the two coalitions as θ = 

n A 
n B 

, where θ ∈ (0, 1]. We also let θα = θ
α

1+ α , which measures the “ad-

justed” size ratio of the two coalitions, taking into account the degree of local interdependencies of conflicts α. Notice that

θα ∈ (0, 1] given α > 0. Moreover, both θ and θα measure the asymmetry between the two coalitions: while θ directly

captures the asymmetry in coalition sizes, θα indirectly measures the relative group size for a certain degree of local inter-

dependencies of conflicts. Intuitively, as α increases, the marginal cost of an agent in the small coalition gets much higher

than that of an agent in the large coalition. This implies that each agent in the small coalition becomes weaker than any

of her rivals in the large coalition. In summary, a higher θ (or a higher θα for any given α) implies a weaker asymmetry

between the two coalitions. 

Some of our equilibrium analysis follows directly from Franke and Öztürk (2015) . First, the results on the existence and

uniqueness of an equilibrium in Proposition 1 of Franke and Öztürk (2015) continue to hold in our model. Moreover, Lemma

1 in Franke and Öztürk (2015) proves that the equilibrium is interior, where the winning probability function takes the form

of Tullock with r = 1 . Similarly, we can show that the interior result still holds even for 0 < r < 1. The details are given in

Section A.1 . 

Therefore, the unique interior pure-strategy equilibrium x ∗ = ( x ∗
k 
) k ∈ N is characterized by the following first-order condi-

tions: 

V ·
r(x ∗

i j 
) r−1 (x ∗

ji 
) r 

[(x ∗
i j 
) r + (x ∗

ji 
) r ] 2 

− (X 

∗
i ) 

α = 0 and V ·
r(x ∗

ji 
) r−1 (x ∗

ji 
) r 

[(x ∗
ji 
) r + (x ∗

i j 
) r ] 2 

− (X 

∗
j ) 

α = 0 , (1) 

for each agent i ∈ A and each agent j ∈ B . Here, x ∗
i 

= (x ∗
i j 
) j∈ B , X ∗i = 

∑ 

j∈ B x ∗i j 
, x ∗

j 
= (x ∗

ji 
) i ∈ A , and X ∗

j 
= 

∑ 

i ∈ A x ∗ji . It can be derived

directly that x ∗
i j 

= x a and x ∗
ji 

= x b for each agent i ∈ A and each agent j ∈ B , where 

x a = 

[
V rθ r 

α

n 

α
B ( 1 + θ r 

α) 
2 

] 1 
1+ α

and x b = 

[
V rθ r 

α

n 

α
A ( 1 + θ r 

α) 
2 

] 1 
1+ α

. (2) 

The following proposition formally summarizes the above equilibrium result. 

Proposition 1. In a complete bipartite conflict network game, there exists a unique pure-strategy equilibrium, in which the equi-

librium effort of each agent in coalition A against each agent in B is x a , and the equilibrium effort of each agent in coalition B

against each agent in A is x b , where x a and x b are given by Eq. (2) . 

Based on the uniqueness result in Proposition 1 , the equilibrium behavior of each agent can be further studied. When

the two coalitions are of equal size (i.e., n A = n B ), each agent would behave symmetrically by exerting the same level of

effort in every bilateral conflict and incurring the same amount of total effort. The more interesting case, which we focus

on hereafter, is when both coalitions are asymmetric (i.e., n A < n B ), so that agents in different coalitions behave differently. 

Comparing the equilibrium behavior of agents in different coalitions, we find that each member of the larger coalition

exerts more equilibrium effort in each bilateral conflict but less total equilibrium effort (see Section A.1 for details). This

reflects the fact that when competing with fewer rivals, each agent in the larger coalition competes more aggressively

(because of the lower effective cost against each rival) but incurs a lower total effort (because there are fewer bilateral

conflicts involved). Moreover, each agent in the larger coalition also wins each bilateral conflict with a higher probability and

receives a higher equilibrium payoff. As a result, the larger coalition, as a whole, exerts less total effort and obtains a higher

total equilibrium payoff. All these results are qualitatively consistent with the findings in Franke and Öztürk (2015) where

r = 1 . 

We further consider how the size of each coalition affects the equilibrium behaviors of agents. The results are sum-

marized as follows: first, the equilibrium effort of each small-coalition agent against each of her rivals increases in the

size of the smaller coalition and decreases in the size of the larger coalition, while the equilibrium effort of each large-

coalition agent against each of her rivals decreases in the size of each coalition. Second, the total equilibrium effort of each

small-coalition agent increases in the size of each coalition, while the total equilibrium effort of each large-coalition agent

increases in the size of the smaller coalition and decreases in the size of the larger coalition. Third, the total equilibrium

effort of each coalition and the conflict intensity increase in the size of each coalition. The details are given in Section A.1 . 
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Intuitively, as the size of the smaller coalition increases, each large-coalition agent has less incentive to exert effort

against any of her rivals (since she must incur a higher marginal cost in each bilateral conflict when competing with more

rivals) but exerts higher total effort (since she is involved in more bilateral conflicts). Similarly, an increase in the size of the

larger coalition would lower the effort level of each small-coalition agent, resulting in lower effort of each large-coalition

agent. This logic, however, does not exactly work for agents in the smaller coalition who are also affected by a disincentive

effect: in networks where two coalitions are asymmetric, agents in the smaller coalition tend to have less incentive to exert

effort. As the size of the smaller coalition increases, this disincentive effect is weakened, which implies that agents in the

smaller coalition would compete more aggressively. This explains why the equilibrium effort of each small-coalition agent

against each of her rivals increases, rather than decreases, in the size of the smaller coalition. The relationship between the

total effort of each small-coalition agent and coalition sizes can also be explained following a similar argument. 

The fact that both the total effort of each coalition and overall conflict intensity increase in the size of each coalition

suggests a positive relationship between the total effort and the number of bilateral conflicts in complete bipartite network

games. This result is a generalization of the findings of Franke and Öztürk (2015) , whose model focuses on a special conflict

technology with constant returns to scale. 

3.2. Returns to scale technology 

The most important feature of our network model is the introduction of the returns to scale technology, which measures

the competitiveness of each bilateral conflict. Although the conflict technology of a network seems exogenous, it may change

over time (e.g., from ancient war to high-tech war or from physical store sales to e-commerce sales) or vary across different

networks (e.g., global war/competition vs. country-level war/competition). An interesting question is how the conflict tech-

nology affects the equilibrium behavior of agents. Specifically, our aim is to address how a change in the returns to scale

technology affects the equilibrium effort of each agent, total equilibrium effort of each coalition, and the conflict intensity. 

In the literature on contests without network structures, it is widely acknowledged that as the contest technology param-

eter r increases, a contest becomes more discriminatory such that it tends to elicit higher individual effort and total effort.

One might expect a similar result to hold in conflict networks. However, we find that such a result does not necessarily hold

in complete bipartite conflict network games. 

Let θ̄α denote a critical “adjusted” size ratio of two coalitions, which is the unique solution to the equation 1 +
1 −θα
1+ θα

ln θα = 0 . Note that θ̄α ≈ 0 . 2137 . The following proposition summarizes the impact of the returns to scale technology

on the equilibrium effort s of agents in complete bipartite conflict networks. 

Proposition 2. In a complete bipartite network game, we have the following properties. 

1. If the two coalitions are sufficiently asymmetric ( θα < θ̄α), the equilibrium effort of each agent in any bilateral conflict, the

total equilibrium effort of each agent, the total equilibrium effort of each coalition, and conflict intensity are all increasing in r

when r ∈ (0 , ̄r ) and decreasing in r when r ∈ ( ̄r , 1] , where r̄ ∈ (0 , 1) is the unique solution to 1 
r + 

1 −θ r 
α

1+ θ r 
α

ln θα = 0 for a given

θα . 

2. If the two coalitions are not sufficiently asymmetric ( ̄θα ≤ θα ≤ 1 ), the equilibrium effort of each agent in any bilateral conflict,

the total effort of each agent, the total investment of each coalition, and conflict intensity are all monotonically increasing in

r when r ∈ (0, 1] . 

Proof. See the Appendix ( Section A.2 ). �

Proposition 2 shows that the effects of returns to scale technology on equilibrium effort s crucially depend on the relative

asymmetry of the two coalitions θα . When the two coalitions are not sufficiently asymmetric (i.e., θα ≥ θ̄α), which occurs

when the size ratio of the two coalitions is large or when the degree of local interdependencies of conflicts is low, equilib-

rium effort s are always increasing in r . However, when the two coalitions are sufficiently asymmetric (i.e., θα < θ̄α), there

exists an inverted U relationship between equilibrium effort s and returns to scale technology. 

Intuitively, two effects can be identified: a competition effect and a discouragement effect . First, as returns to scale tech-

nology increases, the competition between agents in each bilateral conflict becomes fiercer, which implies that each agent

has stronger incentives to exert effort (competition effect). Second, a small-coalition agent realizes that she is less likely to

win in each conflict as r increases. That is, in a symmetric equilibrium, if she wants to win with a higher probability in

each conflict, she has to exert more effort in each competition, which leads to a huge effort cost since she faces many rivals.

This discourages her from investing more. In response, an agent in the larger coalition may want to lower her own effort

level (discouragement effect). Since these two effects work in opposite directions, the net effect on the equilibrium efforts

would depend on which one dominates. When the two coalitions are not sufficiently asymmetric, the discouragement effect

is always dominated by the competition effect, which leads to a usually positive relationship between r and equilibrium

effort s. By contrast, when the two coalitions are sufficiently asymmetric, which occurs when the size ratio of the two coali-

tions is small and the degree of local interdependencies of conflicts is high, either effect can dominate: the discouragement

effect continues to be dominated for a low level of r but becomes stronger than the competition effect when r reaches some

critical level r̄ . As a result, the equilibrium effort of each agent first increases and then decreases as r increases. 

Since the conflict intensity is the aggregation of individual effort s, we also find an inverted U relationship between

returns to scale technology and conflict intensity, when the two coalitions are sufficiently asymmetric, i.e., when the size
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Fig. 2. The relationship between equilibrium effort s and returns to scale technology. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ratio of the two coalitions is small and the degree of local interdependencies of conflicts is high. Otherwise, conflict intensity

is strictly increasing in returns to scale technology. 

To see how the relationship between equilibrium effort s and returns to scale technology is affected by the relative asym-

metry between the two coalitions, we consider two examples in Fig. 2 . Fig. 2 (a) depicts the case with V = 10 , α = 2 , n A = 2 ,

and n B = 50 , which implies that θ = 

1 
25 and θα = 

(
1 

25 

) 2 
3 . This captures the case in which the two coalitions are sufficiently

different in size. In this case, the critical value r̄ = 0 . 7192 . It is clear that the equilibrium effort of each agent ( x a or x b )

increases in r when r < r̄ , reaches its maximum when r reaches the critical level r̄ and decreases thereafter. Fig. 2 (b) depicts

the case with V = 10 , α = 2 , n A = 2 , and n B = 4 , where θ = 

1 
2 and θα = ( 1 2 ) 

2 
3 , so that the two coalitions are close in size.

It shows a positive relationship between equilibrium effort s ( x a and x b ) and the returns to scale technology parameter r for

r ∈ (0, 1]. 

Proposition 2 can be used to understand the behaviors of agents in conflict networks. Contrary to the conventional wis-

dom that conflict intensity tends to be higher as the returns to scale technology increases, our finding suggests that the

result can be reversed in complete bipartite networks in which two coalitions are sufficiently different in size. This find-

ing offers a possible explanation for some phenomena observed in real-world conflict networks. Although the return from

winning a war in modern times is higher than that from an ancient war, opposing military alliances do not always expand

their military expenditures. The non-monotonic relationship between the returns to scale technology and effort spending

of agents seems to be more relevant in the case of market competition. With the development of the internet and modern

technology, online sales have had a considerable impact on the nature of competition among sellers and on consumers’

daily life. During the period when internet sales were first introduced, intensified competition between traditional brick-

and-mortar firms and individual online sellers led to huge investments in sales promotion. In recent years, however, both

sales staff working in a shopping mall and online sellers seem much less enthusiastic about promoting their products. Ac-

cording to our result, such a change in sellers’ attitudes towards marketing products occurs because of “the discouragement

effect”, which results in salespersons exerting less effort even if market competition is fiercer. 

Our result on the relationship between equilibrium effort s (and conflict intensity) and returns to scale technology in

complete bipartite conflict network games is similar to the findings in the Tullock contest literature. In a Tullock contest

with two asymmetric players, Wang (2010) shows that provided that a pure-strategy equilibrium exists, the equilibrium

effort of each player initially increases and then falls as r increases when the asymmetry is sufficiently large. One might

immediately conjecture that the non-monotonic relationship between equilibrium effort s and returns to scale technology as

established in these two frameworks is a result of the heterogeneity of players. However, we find that this is not sufficient

to ensure that the non-monotonic result holds in our conflict network model. In Wang (2010) , the difference in players’

costs is the only source of the asymmetry between players. In our model, however, the asymmetry between players is
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determined by two factors: the size ratio of coalitions and the degree of local interdependencies of conflicts. Without of the

local interdependencies of conflicts (i.e., α = 0 ), it is straightforward to see that the equilibrium effort s of agent s are always

increasing in returns to scale technology, even if the two coalitions are sufficiently different in size. As a result, the inverted

U relationship between equilibrium effort s and returns to scale technology is non-trivial in our conflict network model, in

which local interdependencies of conflicts play an important role. 

Comparative statics results on the critical value r̄ . Proposition 2 suggests that the critical value r̄ plays an important role in

capturing the relationship between equilibrium effort s of agent s and returns to scale technology. In fact, the critical value

corresponds to the level of returns to scale under which the equilibrium efforts of each agent and conflict intensity are

maximized. If the conflict intensity is regarded as a pure cost for the whole society, as in many conflict networks, the

critical value r̄ exactly captures the situation in which such an inefficient social cost is the highest. 

One might wonder how the critical value is affected by different factors. Given θα , recall that r̄ is the unique solution to

the equation 

1 

r 
+ 

1 − θ r 
α

1 + θ r 
α

ln θα = 0 . 

Thus, it is apparent that r̄ is determined by the adjusted size ratio θα , which depends on both the size ratio θ and the

degree of local interdependencies of conflicts α. From the proof of Proposition 2 , we know that r̄ is increasing in θα . Note

further that θα is increasing in θ but decreasing in α, which follows from 

∂θα

∂θ
= 

α

1 + α
θ− 1 

1+ α > 0 and 

∂θα

∂α
= 

1 

(1 + α) 2 
θα ln θ < 0 . 

Therefore, we obtain that ∂ ̄r 
∂θ

> 0 and 

∂ ̄r 
∂α

< 0 . The following result formally summarizes how the critical value r̄ is affected

by these two factors. 

Proposition 3. The critical level of returns to scale r̄ increases in the size ratio of the coalitions ( θ ) and decreases in the degree

of local interdependencies of conflicts ( α). 

Intuitively, as the discouragement effect increases in the relative asymmetry between the two coalitions, the critical level

of returns to scale r̄ decreases in the relative asymmetry between the two coalitions θα , which also depends on the size

ratio of the two coalitions θ and the degree of local interdependencies of conflicts α. On the one hand, when the size

ratio of coalitions increases, the discouragement effect is weakened, which causes all agents to exert more effort. On the

other hand, when the degree of local interdependencies of conflicts becomes stronger, the marginal cost of an agent in each

bilateral conflict increases, especially for an agent in the smaller coalition who is involved in more conflicts. As a result,

such an agent starts to compete less aggressively than it had previously. In response, an agent in the larger coalition also

slacks off under a low level of returns to scale. 

The following two figures explicitly show how the changes in θ and α affect r̄ . 
Fig. 3. The effect of size ratio on the critical level of returns to scale. 



524 Q. Jiao, B. Shen and X. Sun / Journal of Economic Behavior and Organization 163 (2019) 516–531 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3 shows a positive relationship between r̄ and θ . The solid curve, the dashed curve, and the dotted curve depict the

case with V = 10 , α = 2 , n A = 2 and n B = 200 (case 1); the case with V = 10 , α = 2 , n A = 2 , and n B = 100 (case 2); and the

case with V = 10 , α = 2 , n A = 2 , and n B = 50 (case 3), respectively. The size ratios in these three cases are 1 
100 (case 1), 1 

50 

(case 2), and 

1 
25 (case 3), respectively. Simple calculation shows that the critical values in these three cases are r̄ 1 = 0 . 5027 ,

r̄ 2 = 0 . 5918 , and r̄ 3 = 0 . 7192 , respectively. Therefore, as the size ratio increases from case 1 to case 3, the critical level also

grows. The effect of group size on the critical value could also explain why the impact of a technological change may vary

across markets. Although the introduction of new sales modes has similar effects on competition in both local areas and

at the national level, large companies that sell products in a larger region and face more competitors seem to experience

greater fluctuations in their sales revenues than do some dominant sellers in localized regions. 

Fig. 4. The effect of the degree of local interdependencies on the critical level of returns to scale. 

By contrast, Fig. 4 shows a negative relationship between r̄ and α. In Fig. 4 , the solid curve, the dashed curve, and the

dotted curve depict the case with V = 10 , α = 1 , n A = 2 , and n B = 50 (case 1); the case with V = 10 , α = 2 , n A = 2 , and

n B = 50 (case 2); and the case with V = 10 , α = 3 , n A = 2 , and n B = 50 (case 3), respectively. The critical values in these

three cases are r̄ 1 = 0 . 9590 , r̄ 2 = 0 . 7192 , and r̄ 3 = 0 . 6393 , respectively. Hence, the critical value decreases in α. Our results

suggest that returns to scale technology is more likely to have a negative impact on agents’ total investment expenditures in

networks with stronger local interdependencies between distinct conflicts. For instance, firms in manufacturing industries 

belong to networks with stronger local interdependencies than do those in retailing industries, because the former are

more capacity constrained so that the marginal cost in one product category is more affected by the resources spent on

other products. According to our result, a positive technological shock tends to have a larger (likely negative) impact on

production in manufacturing industries. 

4. Discussions and extensions 

In this section, we extend the benchmark model in several directions. First, we consider the situation in which agents

in different coalitions may have different cost functions. Second, we extend our model by allowing a more general cost

function. Third, we explain why we focus on r ≤ 1 and discuss how our main results can be extended by allowing r to be

larger than one. The detailed workings of each part are relegated to the Appendix. 

4.1. Cost asymmetry 

We have thus far focused on the case in which each agent has the same cost function. In this section, we explore the

possibility that agents in different coalitions may differ in their investment costs. Suppose that each agent i in coalition A

has a cost function of C A (X i ) = 

β
1+ α X 1+ α

i 
, while each agent j in coalition B has a cost function of C B (X j ) = 

1 
1+ α X 1+ α

j 
, where
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β > 0. Thus, all agents in the same coalition are still assumed to have the same cost function, which differs from that of

agents in the other coalition. The parameter β measures the cost asymmetry between coalitions. When β > 1 (resp. β < 1),

agents in the smaller coalition incur a higher (resp. lower) investment cost. 

Despite the presence of cost asymmetry, the existence and uniqueness of a pure-strategy equilibrium, which is also

interior, continue to hold. The equilibrium x ∗ = ( x ∗
k 
) k ∈ N can be characterized by the following first-order conditions 

V ·
r(x ∗

i j 
) r−1 (x ∗

ji 
) r 

[(x ∗
i j 
) r + (x ∗

ji 
) r ] 2 

− β(X 

∗
i ) 

α = 0 and V ·
r(x ∗

ji 
) r−1 (x ∗

ji 
) r 

[(x ∗
ji 
) r + (x ∗

i j 
) r ] 2 

− (X 

∗
j ) 

α = 0 , 

for all players i ∈ A and j ∈ B . Here, x ∗
i 

= (x ∗
i j 
) j∈ B , X ∗i = 

∑ 

j∈ B x ∗i j 
, x ∗

j 
= (x ∗

ji 
) i ∈ A , and X ∗

j 
= 

∑ 

i ∈ A x ∗ji . Simultaneously solving these

equations implies that the equilibrium is again symmetric, that is, x ∗
i j 

= x ′ a , x ∗ji = x ′ 
b 
, and x ′ a and x ′ 

b 
solve 

V r · (x ′ a ) r (x ′ 
b 
) r 

[(x ′ a ) r + (x ′ 
b 
) r ] 2 

= βn 

α
B (x ′ a ) 1+ α, 

V r · (x ′ 
b 
) r (x ′ a ) r 

[(x ′ 
b 
) r + (x ′ a ) r ] 2 

= n 

α
A (x ′ b ) 

1+ α. 

Therefore, we obtain 

x ′ a = 

[
V r(θ ′ 

α) r 

βn 

α
B ( 1 + (θ ′ 

α) r ) 
2 

] 1 
1+ α

and x ′ b = 

[
V r(θ ′ 

α) r 

n 

α
A ( 1 + (θ ′ 

α) r ) 
2 

] 1 
1+ α

, 

where θ ′ 
α = θαβ− 1 

1+ α . Note that θ ′ 
α ≤ 1 if and only if β ≥ θα . The equilibrium outcomes now depend on the cost asymmetry

β . 

We first consider the case in which β ≥ θα , which means that the agents in the small coalition have higher costs (i.e.,

β > 1) or slightly lower costs (i.e., 1 ≥β ≥ θα). We find that each small-coalition agent again exerts lower effort than any

of her rivals in each bilateral conflict (i.e., x ′ a < x ′ 
b 
) but may also exert a lower level of total effort (i.e., X a < X b ) if the cost

disadvantage is sufficiently strong (i.e., β > θ−1 ). Most importantly, Proposition 2 continues to hold once we replace θα in

that proposition with θ ′ 
α . In other words, there also exists an inverted U relationship between the returns to scale tech-

nology and (individual and total) equilibrium effort s when two coalitions are sufficiently different in size (i.e., θ ′ 
α < θ̄α).

Proposition 3 also holds, except that when β > θ−1 , the relationship between the critical value r̄ and α becomes positive. In

addition, since θ ′ 
α is decreasing in β , we further establish a negative relationship between r̄ and β . This implies that as the

cost of each small-coalition agent larger, it is more likely that equilibrium effort s change non-monotonically as the returns

to scale technology increases. 

Next we consider the case in which β < θα where agents in the small coalition have a cost advantage over their rivals in

the large coalition. If we define θ in v 
α = 

1 
θ ′ 
α

∈ (0 , 1) , then the equilibrium effort s can be rewritten as 

x ′ a = 

[ 

V r(θ in v 
α ) r 

βn 

α
B 

(
1 + (θ in v 

α ) r 
)2 

] 

1 
1+ α

and x ′ b = 

[ 

V r(θ in v 
α ) r 

n 

α
A 

(
1 + (θ in v 

α ) r 
)2 

] 

1 
1+ α

. 

Contrary to the results in Section 3.1 , each agent in the small coalition now exerts higher effort than any of her rivals in each

bilateral conflict (i.e., x ′ a > x ′ 
b 
) and a higher level of total effort (i.e., X a > X b ). This suggests that a small-coalition agent now

acts as a stronger player compared to each rival in the large coalition. However, the main results in Proposition 2 continue to

hold once we replace θα with θ in v 
α . All results in Proposition 3 are reversed, reflecting the feature that the cost asymmetry

between agents in different coalitions increases when agents in the small coalition have lower costs or the group size ratio

is higher, both of which strengthen the cost advantage of small-coalition agents. 

4.2. General cost function 

Our main results are derived based on a specific cost function, which is a power function. However, we show that our

main result of the effect of returns to scale technology on equilibrium effort s continues to hold for a general cost function

C ( X i ). Consider a general cost function C ( ·), which is strictly increasing and convex, i.e., C ′ ( ·) > 0, C ′′ ( ·) > 0, and C(0) = 0 . 

In a (symmetric) pure-strategy equilibrium, we have x ∗
i j 

= x a and x ∗
ji 

= x b for each agent i ∈ A and each agent j ∈ B . Then,

x a and x b solve the following first-order conditions: 

V r · x r a x 
r 
b 

(x r a + x r 
b 
) 2 

= C ′ (X a ) x a and V r · x r a x 
r 
b 

(x r a + x r 
b 
) 2 

= C ′ (X b ) x b , 

where X a = n B x a and X b = n A x b . The above equations also imply that 

C ′ (X a ) x a = C ′ (X b ) x b . (3)

This establishes an increasing relationship between x a and x , given that C ′ ( X ) x is increasing in x for i = a, b. 
b i i i 
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We further define a function g(x b ) = 

x a 
x b 

, where x a is an implicit function of x b determined by Eq. (3) . To show that there

exists an inverted U relationship between equilibrium effort s ( x a and x b ) and r , we find that it is sufficient to prove g ′ ( x b ) ≤ 0.

The details are provided in Section A.3 . To guarantee g ′ ( x b ) ≤ 0, we present a sufficient condition: 

h 

′ (x ) ≥ 0 , (4) 

where h (x ) = 

C ′′ (x ) 
C ′ (x ) 

x . That is, the cost function is sufficiently convex. Note that when C(x ) = 

1 
1+ α x 1+ α, we have h (x ) = 

1 
α ,

where Eq. (4) holds. 

Thus, given that condition (4) holds (or g ′ ( x b ) ≤ 0), there is a non-monotonic relationship between the returns to scale

technology and equilibrium effort s. In particular, the equilibrium effort s x b and x a are increasing in r when r is small and de-

creasing in r when r is sufficiently large. Therefore, our main result of the effect of return to scale technology on equilibrium

effort s continues to hold for a general cost function. 

4.3. Increasing returns to scale 

We have thus far assumed non-increasing returns to scale (i.e., r ≤ 1), which ensures the existence and uniqueness of

a pure-strategy equilibrium in our model. Once we allow for increasing returns to scale (i.e., r to be larger than one), the

payoff function of each agent is no longer concave. It remains an open question to establish the existence and uniqueness of

equilibrium in conflict network games where players’ payoff functions are not concave. In fact, in complete bipartite conflict

network games, the symmetric pure-strategy equilibrium, which we have characterized, may fail to exist. 

For a symmetric pure-strategy equilibrium to exist, two set of conditions must hold. First, the second-order (necessary)

conditions must be satisfied for each agent in equilibrium. Second, each agent’s participation constraint should also be

satisfied. It can be derived that the second-order conditions are satisfied for all agents if and only if r < r 1 , where r 1 > 1 is

the unique solution to ψ 1 (r) = θ r 
α − r−1 

1+ r = 0 . In addition, the participation constraints hold for all agents if and only if r ≤ r 2 ,

where r 2 > 1 is the unique solution to ψ 2 (r) = 

r 
1+ θ r 

α
− (1 + α) = 0 . Therefore, the symmetric equilibrium exists only if r < r 1 

and r ≤ r 2 . Note that both r 1 and r 2 are increasing in θα . When θα is sufficiently small (i.e., the group size difference is

sufficiently large and/or the degree of local interdependencies is sufficiently strong), r cannot be too large for guaranteeing

the existence of a symmetric equilibrium. In particular, when θα is sufficiently close to zero, the threshold r 1 will also

approach 1, which implies that the symmetric equilibrium is unlikely to exist when r > 1. The details are given in Section A.4 .

Our main result that there exists a non-monotonic relationship between equilibrium effort s and returns to scale tech-

nology, however, would continue to apply in the case when r > 1, provided the existence of the symmetric pure-strategy

equilibrium, which is characterized in Proposition 1 . 

5. Concluding remarks 

Our paper is among the first to study how agents behave in conflict networks with returns to scale technology. Focusing

on complete bipartite conflict network games, we find that returns to scale technology plays an important role in affecting

the equilibrium behavior of agents. We further identify two important factors that determine the relationship between

the equilibrium effort s of agent s and returns to scale technology: the size ratio of the two coalitions and the degree of

local interdependencies of conflicts. We show that there exists an inverted U relationship between equilibrium efforts and

the returns to scale technology, provided that the two coalitions are sufficiently different in size and the degree of local

interdependencies of conflicts is high. Such a result offers a possible explanation for why conflict intensity can be reduced

as conflict technology varies. 

Complete bipartite conflict network games are featured by their asymmetry, which seems critical for the existence of

the non-monotonic relationship between equilibrium efforts and returns to scale technology. An obvious idea for further

research would be to extend the current model to more general network structures. One might want to identify other factors

that also contribute to the asymmetry of agents. It would be interesting to investigate whether an inverted U relationship

between equilibrium effort s and returns to scale technology continues to exist in those cases. 

Our results can also be tested empirically or by laboratory experiments. For instance, it is possible to use the military

expenditure data from opposing military alliances or the data from the sales industry to empirically verify this predicted

inverted U relationship. Moreover, it would be intriguing to design contest experiments using the network structure of this

study. 

Appendix A 

A1. Proofs of results in Section 3.1 

In this section, we provide the detailed analysis for the results in Section 3.1 . 

The interiority result is established in the following lemma. 

Lemma 1. The unique pure-strategy Nash equilibrium in a bipartite conflict network game is interior. 
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Proof. The proof consists of the following two claims: 

Claim 1: Two direct rivals cannot exert zero effort in equilibrium in their respective bilateral conflicts. Consider an arbitrary

strategy profile x = ( x i ) i ∈ N , where x i j = x ji = 0 for some agents i ∈ A and j ∈ B . Consider another strategy for agent i : x ′ 
i 
=

(x i 1 , . . . , x 
′ 
i j 
, . . . , x in b ) , where x ′ 

i j 
= ε for some sufficiently small constant ε > 0. Since p(x ′ 

i j 
, x ji ) = p(ε, 0) = 1 > 

1 
2 = p(x i j , x ji )

and lim ε→ 0 c(X ′ 
i 
) = c(X i ) , we have that u i ( x 

′ 
i 
, x −i ) > u i ( x i , x −i ) . That is, x ′ 

i 
is a profitable deviation of x i . 

Claim 2: An agent cannot exert zero effort in equilibrium against a rival with positive conflict investment. Assume by

contradiction that there exists an equilibrium x ∗ = ( x ∗
1 
, . . . , x ∗

i 
, . . . , x ∗

j 
, . . . , x ∗n ) , where i ∈ A, j ∈ B , x ∗

i j 
= 0 , and x ∗

ji 
> 0 . Con-

sider another strategy for agent j : x ′ 
j 
= (x j1 , . . . , x 

′ 
ji 
, . . . , x jn a ) , where x ′ 

ji 
= 

1 
2 x ji , i.e., agent j only reduces the effort exerted

against rival i without altering effort s in all other conflicts. Since p(x ′ 
ji 
, x ∗

i j 
) = 1 = p(x ∗

ji 
, x ∗

i j 
) and c(X ′ 

j 
) < c(X ∗

j 
) , we have

u j ( x 
′ 
j 
, x ∗− j 

) > u i ( x 
∗
j 
, x ∗− j 

) . Hence, x ∗ cannot be an equilibrium. 

Therefore, the unique pure-strategy Nash equilibrium is interior. �

We then compare the equilibrium individual effort s and tot al effort s between two coalitions. Denote the total equilibrium

effort of each agent in coalition A (resp. B ) by X a (resp. X b ), and the total equilibrium effort of all agents in coalition A (resp.

B ) by X A (resp. X B ). By symmetry, we have X a = n B x a , X b = n A x b , X A = n A n B x a , and X B = n A n B x b . Furthermore, the overall

conflict intensity (or the total equilibrium effort of all agents) in the network, denoted by ˆ X , can be written as ˆ X = X A + X B . 

Comparing equilibrium effort of each agent in two coalitions, we have 

x a 
x b 

= θα < 1 , X a 
X b 

= θ− 1 
1+ α > 1 , and 

X A 
X B 

= 

x a 
x b 

= θα < 1 . 

When two coalitions are different in sizes, agents in the smaller coalition tend to compete less aggressively than those

in the larger coalition. In particular, an agent in the smaller coalition exerts a lower effort than her rival in each bilateral

conflict ( x a < x b ), and all agents in the smaller coalition also exert less than those in the larger coalition ( X A < X B ). However,

the total effort made by each agent in the smaller coalition is larger than that made by each agent in the larger coalition

( X a > X b ). This captures the fact that each small-coalition agent is involved in more bilateral conflicts compared to any of

her rivals in the larger coalition. Furthermore, note that in each bilateral conflict, the equilibrium winning probability of an

agent in coalition A is p a = 

x r a 
x r a + x r b 

, and that of an agent in coalition B is p b = 

x r 
b 

x r a + x r b 
. The fact that x a < x b would also imply

p a < 

1 
2 < p b , so that an agent in the larger coalition wins each bilateral conflict with a higher probability. Provided that

equilibrium payoff of each agent is increasing in her winning probability in each bilateral conflict and decreasing in her

total effort, an agent in the larger coalition also receives a higher equilibrium payoff. 

In addition, comparing total equilibrium effort s between two coalitions, we obtain 

X A 
X B 

= θα < 1 , so that the larger coali-

tion invests more than the smaller one does. The total equilibrium payoff of all agents in coalition A is 

U A = n A u a = n A n B V p a − n A 
1+ α X 

1+ α
a , 

and that of all agents in coalition B is 

U B = n B u b = n A n B V p b − n B 
1+ α X 

1+ α
b 

. 

Provided that X a 
X b 

= θ− 1 
1+ α , it can be checked that 

n A 
1+ α X 1+ α

a = 

n B 
1+ α X 1+ α

b 
, which further implies that U A < U B . As a result, the

net surplus of all members in the larger coalition is also higher. 

We further investigate how the number of each coalition affects the equilibrium effort s. First consider the effect of n A on

equilibrium effort s x a and x b . It is equivalent to see how n A affect s ln x a and ln x b , where 

ln x a = 

1 

1 + α

[ 
ln (V r ) + 

r α

1 + α
ln θ − α ln n B − 2 ln 

(
1 + θ

αr 
1+ α

)] 
, 

ln x b = 

1 

1 + α

[ 
ln (V r ) + 

r α

1 + α
ln θ − α ln n A − 2 ln 

(
1 + θ

αr 
1+ α

)] 
. 

Notice that 

∂ ln x a 

∂θ
= 

∂ ln x b 
∂θ

= 

rα

(1 + α) 2 θ

1 − θ r 
α

1 + θ r 
α

> 0 . 

Then 

∂ ln x a 

∂n A 

= 

∂ ln x a 

∂θ

∂θ

∂n A 

= 

rα

(1 + α) 2 n A 

1 − θ r 
α

1 + θ r 
α

> 0 , 

∂ ln x b 
∂n A 

= 

∂ ln x b 
∂θ

∂θ

∂n A 

− α

(1 + α) n A 

= − α

(1 + α) n A 

(
1 − r 

1 + α

1 − θ r 
α

1 + θ r 
α

)
< 0 . 

Moreover, we have 

∂ ln X a 

∂n 

= 

∂ ln x a 

∂n 

> 0 , 

A A 
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∂ ln X b 

∂n A 

= 

∂ ln x b 
∂n A 

+ 

∂ ln n A 

∂n A 

= 

1 

(1 + α) n A 

(
1 + 

rα

1 + α

1 − θ r 
α

1 + θ r 
α

)
> 0 , 

∂ ln X A 

∂n A 

= 

∂ ln X a 

∂n A 

+ 

∂ ln n A 

∂n A 

> 0 , 

∂ ln X B 

∂n A 

= 

∂ ln X b 

∂n A 

> 0 . 

Analogously, we can study the effect of n B on the corresponding equilibrium effort s, where 

∂ ln x a 

∂n B 

= 

∂ ln x a 

∂θ

∂θ

∂n B 

− α

(1 + α) n B 

= − rα

(1 + α) 2 n B 

1 − θ r 
α

1 + θ r 
α

− α

(1 + α) n B 

< 0 , 

∂ ln x b 
∂n B 

= 

∂ ln x b 
∂θ

∂θ

∂n B 

= − rα

(1 + α) 2 n B 

1 − θ r 
α

1 + θ r 
α

< 0 . 

Furthermore, 

∂ ln X a 

∂n B 

= 

∂ ln x a 

∂n B 

+ 

∂ ln n B 

∂n B 

= 

1 

(1 + α) n B 

(
1 − rα

1 + α

1 − θ r 
α

1 + θ r 
α

)
> 0 , 

∂ ln X b 

∂n B 

= 

∂ ln x b 
∂n B 

< 0 , 

∂ ln X A 

∂n B 

= 

∂ ln X a 

∂n B 

> 0 , 

∂ ln X B 

∂n B 

= 

∂ ln X b 

∂n B 

+ 

∂ ln n B 

∂n B 

= 

1 

(1 + α) n B 

(
1 + α − rα

1 + α

1 − θ r 
α

1 + θ r 
α

)
> 0 . 

The effects of n A and n B on conflict intensity ˆ X are 

∂ ̂  X 

∂n A 

= 

∂X A 

∂n A 

+ 

∂X B 

∂n A 

> 0 , 

∂ ̂  X 

∂n B 

= 

∂X A 

∂n B 

+ 

∂X B 

∂n B 

> 0 . 

A2. Proof of Proposition 2 

To show how the change in parameter r affects equilibrium effort levels x a and x b , determined by Eq. (2) , we consider

two cases separately. 

First, we consider the trivial case in which θα = 1 . This occurs if θ = 1 (i.e., n A = n B ) or α = 0 . Then we get 

x a = 

(
V r 

4 n 

α
B 

) 1 
1+ α

and x b = 

(
V r 

4 n 

α
A 

) 1 
1+ α

. 

It is straightforward to see that for r ∈ (0, 1], both x a and x b are strictly increasing in r . 

Second, we consider the non-trivial case in which 0 < θα < 1. This occurs if α > 0 and n A < n B . To see the effect of r on x a 

and x b , it suffices to study the effect of r on G ( r ), where G (r) ≡ ln 

rθ r 
α

(1+ θ r 
α ) 2 

. Note that we can rewrite G ( r ) as 

G (r) = ln r + r ln θα − 2 ln (1 + θ r 
α) . 

For any fixed V > 0, n A > 0, n B > 0, and α > 0, x a and x b are increasing (resp. decreasing) in r if and only if G ( r ) is increasing

(resp. decreasing) in r . To see the effect of r on G ( r ), we have 

G 

′ (r) = 

1 

r 
+ 

1 − θ r 
α

1 + θ r 
α

ln θα and G 

′′ ( r) = − 1 

r 2 
− 2 θ r 

α

(1 + θ r 
α) 2 

( ln θα) 
2 

< 0 , 

which implies that G ( r ) is strictly concave. Given that lim 

r→ 0+ 
G 

′ (r) > 0 and lim 

r→∞ 

G 

′ (r) < 0 , there exists a unique r̄ > 0 such that

G 

′ ( ̄r ) = 0 , i.e., r̄ uniquely solves 

1 

r̄ 
+ 

1 − θ r̄ 
α

1 + θ r̄ 
α

ln θα = 0 . 

Thus, G ( r ) is increasing (resp. decreasing) in r if and only if r < r̄ (resp. r > r̄ ). 

Next we need to compare r̄ with 1. Note that r̄ must be increasing in θα . To see this, let F ( ̄r , θα) = 

1 
r̄ 

+ 

1 −θ r̄ 
α

1+ θ r̄ 
α

ln θα = 0 .

Then we get 

∂F 

∂ ̄r 
= − 1 

r̄ 2 
− 2 θ r̄ 

α

(1 + θ r̄ 
α) 2 

( ln θα) 
2 

< 0 , 
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∂F 

∂θα
= 

1 − θ r̄ 
α

(1 + θ r̄ 
α) θα

− 2 ̄r θ r̄ −1 
α

(1 + θ r̄ 
α) 2 

ln θα > 0 . 

By Implicit Function Theorem, we have 

d ̄r 

d θα
= −

∂F 
∂θα

∂F 
∂ ̄r 

> 0 . 

Moreover, when θα → 1, r̄ → + ∞ ; when θα → 0, r̄ → 0+ . Therefore, there exists a unique θ̄α ∈ (0 , 1) that solves 

1 + 

1 − θ̄α

1 + θ̄α

ln θ̄α = 0 . 

Then we have θ̄α ≈ 0 . 2137 , and r̄ < 1 if and only if θα < θ̄α . Therefore, when θα < θ̄α, x a and x b are increasing in r for r < r̄ ,

and decreasing in r for r̄ < r < 1 ; when θ̄α ≤ θα ≤ 1 , x a and x b are increasing in r for r ∈ (0, 1]. 

A3. Proof of result in Section 4.2 

In this section, we formally prove that in a bipartite conflict network game, there exists an inverted-U relationship be-

tween equilibrium effort s and r , for a general convex cost function, provided that condition (4) holds. 

First, we can show that (i) 1 < 

X a 
X b 

< 

n B 
n A 

; (ii) 
n A 
n B 

< 

x a 
x b 

< 1 . From Eq. (3) and the definition of X a and X b , we get 

C ′ (X a ) X a 

C ′ (X b ) X b 

= 

n B 

n A 

. 

Since C ′ ( x ) x is increasing in x , we get X b < X a , i.e., X a 
X b 

> 1 . Then we also have X a 
X b 

= 

C ′ (X b ) 

C ′ (X a ) 
n B 
n A 

< 

n B 
n A 

. This establishes (i). It is

easy to check (ii) holds by the definition of X a and X b . By the definition of g ( ·), we know that 0 < g ( x b ) < 1 for any x b > 0. 

Next we show under condition (4) , g ′ ( x b ) ≤ 0. Note that 

g ′ (x b ) = 

1 

x b 

(
d x a 

d x b 
− x a 

x b 

)

= 

1 

x b 

(
C ′′ (X b ) X b + C ′ (X b ) 

C ′′ (X a ) X a + C ′ (X a ) 
− x a 

x b 

)

= 

1 

x 2 
b 
[ C ′′ (X a ) X a + C ′ (X a )] 

(
C ′′ (X b ) X b x b − C ′′ (X a ) X a x a 

)
= 

C ′ (X b ) 

x b [ C 
′′ (X a ) X a + C ′ (X a )] 

(
C ′′ (X b ) X b 

C ′ (X b ) 
− C ′′ (X a ) X a 

C ′ (X a ) 

)
, 

where the second equality follows from total differentiation of Eq. (3) with respect to x a and x b . Then we know g ′ ( x b ) ≤ 0 if

and only if 
C ′′ (X b ) X b 

C ′ (X b ) 
− C ′′ (X a ) X a 

C ′ (X a ) 
≤ 0 . Provided that X b < X a , condition (4) ensures that g ′ ( x b ) ≤ 0. 

We further define f (x ) = C ′ (n A x ) x . Note that f ′ ( x ) > 0. By the definition of f and g , the equilibrium effort x b is (uniquely)

determined by 

V r 
g r (x b ) 

[ g r (x b ) + 1] 2 
= f (x b ) . (5)

Note that the uniqueness of x b follows from the fact that the RHS of Eq. (5) is increasing in x b , while the LHS is decreasing

in x b , given that 0 < g ( x b ) < 1 and g ′ ( x b ) ≤ 0. 

To show the effect of r on x b , we take log of Eq. (5) and then totally differentiate it with respect to x b and r , which gives

d x b 
d r 

= −
1 
r 

+ 

1 −g r (x b ) 
1+ g r (x b ) 

ln g(x b ) 

r 
g(x b ) 

1 −g r (x b ) 
1+ g r (x b ) 

g ′ (x b ) − 1 
f (x b ) 

f ′ (x b ) 
. (6)

Firstly, note that the denominator in Eq. (6) is always negative, given that f ′ > 0, g ′ ≤ 0 and 0 < g < 1. Second, the numerator

of Eq. (6) is positive when when r is sufficiently close to zero, and negative when r is sufficiently large, given that 
n A 
n B 

<

g(x b ) < 1 . As a result, we know 

d x b 
d r 

> 0 when r is sufficiently close to zero, and 

d x b 
d r 

< 0 when r is large enough otherwise.

This establishes the inverted-U relationship between equilibrium effort s and returns to scale technology. 
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A4. Proof of result in Section 4.3 

In a bipartite conflict network game, we need to check the second-order conditions and participation constraints for

agents in both coalitions. First, for an agent i ∈ A , define H 

a to be an n B × n B matrix where H 

a 
j j 

= 

∂ 2 u i 
∂x 2 

i j 

for j ∈ B and H 

a 
jk 

=
∂ 2 u i 

∂ x i j ∂ x ik 
for distinct j and k in B . In an equilibrium, we can derived that 

∂ 2 u i 

∂x 2 
i j 

= V 

rx r−2 
a x r 

b 
[(r − 1) x r 

b 
− (1 + r) x r a ] 

(x r a + x r 
b 
) 3 

− α(n B x a ) 
α−1 

= −V rθ r 
α[(1 + r) θ r 

α − (r − 1)] 

x 2 a (1 + θ r 
α) 3 

− α(n B x a ) 
α−1 , 

∂ 2 u i 

∂ x i j ∂ x ik 
= −α(n B x a ) 

α−1 . 

Define m a 1 = 

Vr θ r 
α [(1+ r ) θ r 

α−(r −1)] 

x 2 a (1+ θ r 
α ) 3 

and m a 2 = α(n B x a ) 
α−1 . Clearly, m a 2 > 0. Let the k -th order principal minor determinant of H 

a 

be A 

a 
k 
. It can be derived that A 

a 
k 

= (−1) k (m a 1 ) 
k −1 (m a 1 + km a 2 ) for k = 1 , 2 , . . . , n B . Then H is negative definite if (−1) k A 

a 
k 

> 0 ,

i.e., m 

k −1 
a 1 

(m a 1 + km a 2 ) > 0 for k = 1 , 2 , . . . , n B . We can show the second-order conditions hold if and only if m a 1 > 0, i.e., 

θ r 
α > 

r − 1 

1 + r 
. 

These condition hold if r < r 1 , where r 1 is the unique solution to ψ 1 (r) = θ r 
α − r−1 

1+ r = 0 . The existence follows from ψ 1 (1) > 0,

ψ 1 ( r ) < 0 for r → ∞ , and the continuity of ψ 1 , while the uniqueness follows from the fact that ψ 1 ( r ) is decreasing in r . Note

that we have r 1 > 1. Furthermore, we can derive that 

d r 1 
d θα

= 

r 1 θ
r 1 −1 
α

2 
(1+ r 1 ) 2 − ( ln θα) θ r 1 

α

> 0 , 

which implies that the threshold r 1 is increasing in θα . 

Moreover, the participation constraint for each agent is 

n B 
x r a 

x r a + x r 
b 

V − n B V − 1 

1 + α
(n B x a ) 

1+ α ≥ 0 , 

which requires 

r 

1 + θ r 
α

≤ 1 + α. 

This condition holds if r ≤ r 2 , where r 2 is the unique solution to ψ 2 (r) = 

r 
1+ θ r 

α
− (1 + α) = 0 . The existence follows from

ψ 2 (1) < 0, ψ 2 ( r ) > 0 for r → ∞ , and the continuity of ψ 2 , while the uniqueness follows from that ψ 2 ( r ) is increasing in r .

We also get that r 2 > 1. Furthermore, we can derive that 

d r 2 
d θα

= 

r 2 2 θ
r 2 −1 
α

1 + θ r 2 
α − r 2 θ

r 2 
α ( ln θα) 

> 0 , 

which implies that the threshold r 2 is also increasing in θα . 

Following a similar argument, for an agent j ∈ B , the second-order conditions are satisfied if and only if 

(1 + r) − θ r 
α(r − 1) > 0 , 

which always holds. The participation constraint is 

n A 

x r 
b 

x r a + x r 
b 

V − 1 

1 + α
(n A x b ) 

1+ α ≥ 0 , 

which requires 

rθ r 
α

1 + θ r 
α

≤ 1 + α, 

which is also satisfied given r ≤ r 2 . 

In sum, a set of necessary conditions that ensure the existence of equilibrium are r < r 1 and r ≤ r 2 . Since both r 1 and r 2 
are increasing in θα , when θα is sufficiently small (i.e., the group size difference is sufficiently large and/or the cost function

is sufficiently convex), r cannot be too large in order that the equilibrium exists. In particular, when θα is sufficiently close

to zero, the threshold r would also be very close to 1. This implies that the equilibrium is less likely to arise when r > 1. 
1 
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