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Abstract

We study R&D contest design using both an information disclosure policy and a quality
standard as instruments. An innovator’s ability is only known to himself. The organizer com-
mits ex ante to a minimum quality standard and whether to have innovators’abilities publicly
revealed before they conduct R&D activities. We find that with no quality standard, fully con-
cealing innovators’abilities elicits both higher expected aggregate quality and expected highest
quality. With optimally set quality standards, while fully concealing the ability information
elicits higher expected aggregate quality, fully disclosing the ability information elicits higher
expected highest quality. Moreover, the optimal quality standards are compared across different
objectives and disclosure policies.
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1 Introduction

R&D contests are widely used to promote innovation. In an R&D contest, the procurer/organizer

posts an innovation-related problem to suppliers/innovators and awards the supplier/innovator

who comes up with the best solution. Typically, the procurer can set a minimum accept-

able quality standard to guarantee the quality of the innovations that result from the R&D

contest. For example, in the first automobile race held in the United States, sponsored by

the Chicago Times-Herald in 1895, participating automobiles were required to have enough

power to climb all of the course’s grades. More recently, the 2018 Honda Motor (China)

Energy Saving Competition required the original vehicle body to have three wheels or more,

and be in accordance with all safety regulations. As a further example, participants in the

2018 City University (Hong Kong) App Innovation Contest had to create an app or visu-

ally interactive scene in a Swift playground that could be experienced within three minutes.

Similarly, in many government-sponsored R&D contests, competitors are required to meet

ISO 9001, which is the international standard that specifies the requirements for a quality

management system.

In addition to the design on quality standards, to better incentivize innovators, the pro-

curer/organizer can strategically choose an information disclosure policy regarding the com-

peting innovators’competencies. Very often, each innovator knows his own competency but

not that of his competitors. This competency information, however, can be revealed to be

innovators. For example, research proposals or other materials (e.g., qualifications docu-

ments, certificates, financial reports, etc.) serve as good signals of the competing innovators’

backgrounds; procurers/organizers can learn about participants’abilities from their submit-

ted materials and reveal such information publicly. In the meanwhile, they can also require

participants to share information among themselves.1 We would like to emphasize that the

revelation of information does not depend on the obsevability of innovators’ types by the

organizer. For example, Eső and Szentes (2007) assume in their model that the seller can

control the release of information to buyers about their values even when the seller cannot

observe the information.

In this paper, we study the optimal design of R&D contests when both the information

disclosure policy and quality standard are available to the organizer as design instruments.

We adopt an analytical framework of an all-pay auction with incomplete information to

model R&D innovation contests. We use a minimum bid to capture the minimum quality

standard in contests. Following Moldovanu and Sela (2006) and Konrad and Kovenock (2010),

innovators’abilities (private types) are measured by the inverse of their marginal effort costs,

which are randomly distributed. The contest organizer has two instruments: the disclosure

1This kind of information exchange agreement among participants can be enforced by competition law.
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policy and quality standard. She strategically sets up a quality standard and chooses between

two policy alternatives: (1) fully revealing innovators’competency profiles publicly versus (2)

fully concealing them. Her disclosure policy is ex ante committed prior to the realization of

innovators’ability profiles.

The timing of the game is as follows. First, the contest organizer announces a quality

standard and commits to her disclosure policy publicly. Second, innovators’cost profiles are

realized and everyone’s cost is only known by himself. This information is disclosed to all

innovators if and only if the organizer has chosen full disclosure policy. Finally, innovators

submit their effort entries simultaneously in competition for a single prize.

The design objectives we accommodate include both aggregate quality maximization and

highest quality maximization. In an R&D contest, the organizer might care about only the

best innovation only or the aggregate level of research output, depending on the specific con-

text. The central question we investigate is how the disclosure policy should be optimally

coupled with the quality standard to best incentivize the innovators in each of these design

goal contexts, i.e., aggregate and highest quality maximizations. How should quality stan-

dards be set for different goals under different disclosure policies? If the quality standard

can be optimally set by the contest organizer, should she disclose or conceal the innovators’

types? How does this answer depend on the design goal?

When the contest organizer chooses to have innovators’ types disclosed, a complete-

information all-pay auction with a reserve price occurs. Bertoletti (2016) characterizes the

bidding equilibrium with n(≥ 2) bidders for any given reserve price. The concealment policy
leads to an incomplete-information all-pay auction with a reserve price. For this setting, Riley

and Samuelson (1981) provide the bidding equilibrium. These studies pave the foundation

of equilibrium analysis for our study on optimal design.

Our focus is on optimal design when both disclosure policy and quality standard can be

chosen optimally. To provide a comparison benchmark, we first study a scenario without a

quality standard. For this benchmark environment, we find that fully concealing innovators’

types can elicit both higher ex ante expected aggregate quality and expected highest quality.

In contrast, if the quality standard can be chosen optimally, while fully concealing the infor-

mation elicits a higher ex ante expected aggregate quality, fully disclosing the information

elicits higher ex ante expected highest quality.

The intuitions behind these comparison results are as follows. Without quality standards,

revealing innovators’types publicly tends to discourage both the stronger and weaker inno-

vators’effort supply. Therefore, full disclosure policy is dominated by full concealment policy

for both aggregate and highest quality maximizations. Setting a nontrivial quality standard

tends to discourage the weaker types while better motivating the stronger types. Therefore,

regardless of the disclosure policy, a quality standard as a design instrument would be more
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effective for highest quality maximization than for aggregate quality maximization, and a

higher quality standard would be set for highest quality maximization. For a fixed goal,

setting a quality standard should be more effective, and it should be set higher under the

full disclosure policy than under the full concealment policy, as when innovators’types are

revealed publicly, both stronger and weaker innovators tend to be discouraged in their effort

supply. This conjecture is confirmed analytically for aggregate quality maximization. For

highest quality maximization, it is confirmed by numerical simulations for a class of abil-

ity distributions. As a result, for aggregate quality maximization, setting a quality standard

does not overcome the disadvantage conferred by a full disclosure policy. However, for highest

quality maximization, setting a quality standard can reverse the outcome when comparing

the two disclosure policies.

Strategic disclosure of information about bidders’abilities has been well studied in the

contest literature. Kovenock, Morath, and Münster (2013) consider voluntary information

sharing between two bidders regarding their values in an all-pay auction setting. Morath and

Münster (2008) compare information structures in all-pay auctions. They find that bidders

receive the same expected payoff across full concealment and full disclosure, but full conceal-

ment induces higher expected total effort. Fu, Jiao, and Lu (2014) generalize the insight of

Morath and Münster by allowing for multiple prizes. Serena (2018) and Lu, Ma, and Wang

(2018) study settings of two-player contests with discrete types, and provide complete rank-

ings of four anonymous type-contingent information disclosure policies in environments with

different contest technologies. In a two-player Tullock contest setting, using a Bayesian per-

suasion approach, Zhang and Zhou (2016) study the optimal disclosure policy with one-sided

private information, and find that there is no loss of generality to consider full disclosure and

full concealment when types are binary. Wu and Zheng (2017) investigate contestants’incen-

tives to disclose their valuations of the prize in a Tullock contest setting, and they find that

sharing information is strictly dominated if types are suffi ciently dispersed. Aoyagi (2010)

studies an optimal feedback policy regarding agents’performance in a multi-stage tourna-

ment. Another strand of the literature compares disclosure policies in contests according to

the number of participants. Lim and Matros (2009), Fu, Jiao, and Lu (2011), and Fu, Lu,

and Zhang (2016) mainly focus on Tullock contests with stochastic entry, while Hu, Zhao,

and Huang (2016) and Chen, Jiang, and Knyazev (2017) explore this issue in all-pay auction

settings.

Nearly all of these studies on information disclosure in contests focus on total effort

maximization, with the only exception being Hu, Zhao, and Huang (2016), who consider

two objectives in contests (i.e., maximization of both expected aggregate effort and expected

highest effort). Some other studies also consider both objectives, but adopt different design

instruments. For example, Moldovanu and Sela (2006) compare a one-stage contest and a
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two-stage contest; Chen, Zheng, and Zhong (2015) compare random grouping with ability-

based grouping; and Serena (2017) studies contestant exclusion. To the best of our knowledge,

our paper is the first to study the optimal designs of R&D contests while allowing both a

disclosure policy and quality standard as instruments.

The rest of the paper proceeds as follows. In Section 2, we set up an R&D contest

model with a quality standard, carry out equilibrium analysis, and compare optimal quality

standards under different disclosure policies. Section 3 presents the comparison of disclo-

sure policies under expected aggregate quality maximization and expected highest quality

maximization. Examples and intuitions behind the main results are presented in Section 4.

Section 5 concludes. Proofs of Lemmas and Propositions are relegated to the Appendix.

2 A model of an R&D contest with quality standard

We adopt an analytical framework of a two-player all-pay auction with incomplete informa-

tion to model R&D innovation contests. Innovator i’s marginal cost is ci and corresponding

innovation ability is ai = 1
ci
. A higher ai implies that he is more effi cient in R&D. The

innovators’ abilities ai are independently and identically distributed over a compact sup-

port [a, a] ∈ (0,+∞), with a commonly known cumulative distribution function F (·) and a
continuous density function f (·) (> 0). The realization of ai is the private information of

innovator i. We first impose a regularity condition on the virtual ability, which is a standard

assumption in the literature.

Assumption 1: The (aggregate quality) virtual ability ψ(a) = a− 1−F (a)
f(a)

is increasing in a,

for any a ∈ [a, a].
Moreover, we make the following assumption to guarantee an interior solution so that the

quality standard for aggregate quality maximization under a concealment policy is nontrivial.

This will be further discussed after Corollary 2.

Assumption 2: ψ(a) = a− 1−F (a)
f(a)

< 0.

The two innovators compete in their nonnegative R&D qualities, denoted by x1 and x2.

An innovator wins award V (> 0) if his quality is above the other’s. Ties are broken evenly.

Delivering quality xi costs innovator i by cixi. Therefore, innovator i’s payoff is V − cixi if
he wins, and −cixi if he loses.
The organizer sets a minimum quality standard to guarantee the basic product quality

and commits to her disclosure policy– either to fully disclose the abilities of the innovators or

fully conceal this information to their competitors– and announces the quality standard and

her choice of disclosure policy publicly before innovators’types are realized. We denote the

full disclosure policy by D, full concealment policy by C, the quality standard under policy

D by xD, and the quality standard under policy C by xC .
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The timing of the game is as follows. First, the organizer announces and precommits to

(P, xP ), where P ∈ {D,C}. Then, nature determines innovators’ability profile a = (a1, a2)
according to F (·). After that, the organizer implements (P, xP ). Note that a is disclosed if
and only if policy D is implemented. Finally, innovators simultaneously invest x = (x1, x2)

to vie for the reward V .

2.1 Contests with full disclosure policy D

We first consider the subgame in which policy D has been chosen. Suppose that quality

standard xD is set. In this case, the contest organizer publicly discloses every innovator’s

ability before innovators choose their efforts. A complete-information all-pay auction with

minimum bid xD thus arises.

Define aD = xD
V
, which is interpreted as a threshold ability level in the following analysis.

Without loss of generality, assume a1 > a2.

Bertoletti (2016) considers a contest setting in which bidders bear the same marginal

effort cost, but value the prize differently. A simple transformation allows us to apply his

results to our setting.2 By his Proposition 1, we characterize the equilibrium under policy D

and threshold ability aD in the following lemma.

Lemma 1 (Bertoletti, 2016). Consider a two-innovator all-pay auction with complete infor-
mation with threshold ability aD. Assume a1 > a2.

(a) If V a1 > V a2 > xD > 0, i.e., a1 > a2 > aD > 0, innovator 1 has a mixed equilibrium
bidding strategy on support [V aD, V a2] such that F1 (x1) = x1

V a2
for x1 ∈ [V aD, V a2] ; innovator

2 has a mixed equilibrium bidding strategy on support {0} ∪ [V aD, V a2] such that F2 (0) =
1− a2

a1
+ aD

a1
and F2 (x2) = 1− a2

a1
+ x2

V a1
for x2 ∈ [V aD, V a2]. The expected aggregate quality

is given by R(a1, a2, aD, V ) =
(
a22+a

2
D

2a2
+

a22−a2D
2a1

)
V.

(b) If V a1 > xD > V a2, i.e., a1 > aD > a2, the pure-strategy Nash equilibrium is

x(a1) = V aD and x(a2) = 0. The expected aggregate quality is V aD.

(c) If xD > V a1 > V a2, i.e., aD > a1 > a2, no one submits a positive bid and the

aggregate quality is zero.

Given the equilibrium strategy described in Lemma 1, we can derive the ex ante expected

aggregate quality and highest quality induced under policy D and quality standard xD. We

summarize these results in Lemma 2.
2Our model is strategically equivalent to that of Bertoletti (2016) when, as in his setting, bidders’uniform

marginal effort is normalized to one and bidder i values each prize for V ai = V
ci
.
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Lemma 2 Under policy D, in an all-pay auction contest with quality standard xD and cor-
responding threshold ability aD = xD

V
, the ex ante expected aggregate quality induced is

TQD(aD) = 2V

( ∫ a
aD

(∫ a
a2

(
a22+a

2
D

2a2
+

a22−a2D
2a1

)
dF (a1)

)
dF (a2)

+aD(1− F (aD))F (aD)

)
. (1)

The ex ante expected highest quality induced is

HQD (aD) = 2V

( ∫ a
aD

(∫ a
a2

a1a22+a
2
D(a1−a2)+

1
3
a32+

2
3
a3D

2a1a2
dF (a1)

)
dF (a2)

+aD(1− F (aD))F (aD)

)
. (2)

Proof. See Appendix.
Due to the technical complexity, we are unable to fully characterize the optimal threshold

abilities a∗T,D and a
∗
H,D, which maximize expected aggregate quality and highest quality under

policy D, respectively. However, we are still able to compare those two optimal threshold

ability levels.

Proposition 1 Under policyD, there exist nontrivial optimal threshold abilities a∗T,D, a
∗
H,D ∈

(a, a), which maximize expected aggregate quality and highest quality, respectively. Moreover,

the optimal threshold ability under aggregate quality maximization is almost always lower than

that under highest quality maximization, i.e., a∗T,D < a∗H,D.
3

Proof. See Appendix.
Note that the corresponding optimal quality standard levels are x∗T,D = V a∗T,D, x

∗
H,D =

V a∗H,D, which are strictly positive regardless of the distribution function F (·) . By Proposition
1, one can immediately show that when innovators’ability is disclosed, the optimal quality

standard levels that maximize aggregate quality and highest quality, respectively, both exist

and are almost always unique. Assuming uniqueness, we have the following Corollary.

Corollary 1 Under policy D, the optimal quality standards, x∗T,D and x
∗
H,D, are nontrivial

under both aggregate quality maximization and highest quality maximization. Moreover, under

the uniqueness assumption, the optimal quality standard that maximizes aggregate quality is

always lower than the one that maximizes highest quality, i.e., x∗T,D < x∗H,D.

2.2 Contests with full concealment policy C

We next consider the subgame in which policy C has been chosen. Suppose quality standard

xC is set. In this case, the contest organizer does not disclose the innovators’abilities before
3The optimal threshold ability level is almost always unique, given that TQD(·) is continuous and f (·) > 0.

In the case in which optimal threshold ability levels are not unique, for any a∗T,D, there always exists an a
∗
H,D

such that a∗T,D < a
∗
H,D. However, it is not guaranteed that all a

∗
H,D’s satisfy a

∗
H,D > a

∗
T,D.
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innovators choose their efforts. An incomplete-information all-pay auction with minimum

bid xC thus arises. Define aC such that xC = V aCF (aC), which is interpreted as a threshold

ability level in the following analysis.4

Riley and Samuelson (1981) demonstrate a revenue equivalence result among a broad

family of auction rules in an independent and private value setting, and they characterize

the optimal reserve price. Taking an all-pay auction as a special case of their framework and

setting the contest organizer’s valuation for the prize to be zero, we can obtain the following

symmetric equilibrium and derive the aggregate quality as a function of cutoff ability aC .

Lemma 3 (Riley and Samuelson, 1981). Under policy C, in an all-pay auction contest with
a quality standard xC and the corresponding cutoff ability aC, with xC = V aCF (aC), each

innovator has a symmetric equilibrium bidding strategy

x(ai) = V

[
aCF (aC) +

∫ ai

aC

sf(s)ds

]
. (3)

The contest elicits an ex ante expected aggregate quality

TQC(aC) = 2V

[∫ a

aC

a(1− F (a))dF (a) + aC(1− F (aC))F (aC)
]
. (4)

Moreover, the aggregate quality maximizing cutoff ability is nontrivial (a∗T,C ∈ (a, a)) and
uniquely given by ψ(a∗T,C) = 0.

Proof. See Appendix.
Before investigating the case of expected highest quality maximization, we first define the

highest quality virtual ability as φ(a) = a− 1−F (a)
f(a)

1+F (a)
2F (a)

and show the following properties.

Lemma 4 (a) lim
a→a

φ(a) = −∞.
(b) Under Assumption 1, φ(a) is increasing in a for any a ∈ (a, a].

Proof. See Appendix.
If the organizer chooses to conceal the type information, innovators only have private

information about their own types. The expected highest quality in an all-pay auction with

private values is the expected highest bids of the two innovators
∫ a
aC
x(a)dH(a), whereH(a) =

F (a)2 is the c.d.f of the first order statistics when n = 2. Plugging in the corresponding

bidding strategy, we obtain the organizer’s expected highest quality under full concealment.

4Note that aC is the cutoff ability at which innovators generate quality xC . Also note that aC is well-
defined; that is, for any xC ∈ [0, V a], V aCF (aC) = xC has a unique solution for aC . This is true because
V aCF (aC) is increasing in aC , V aF (a) = 0, and V aF (a) = V a.
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Lemma 5 Under policy C, an all-pay auction contest with a quality standard xC and the
corresponding cutoff ability aC, with xC = V aCF (aC), elicits an ex ante expected highest

quality

HQC(aC) = V

[
aCF (aC)(1− F (aC)2) +

∫ a

aC

a[1− F (a)2]dF (a)
]
. (5)

Moreover, the highest quality maximizing cutoff ability is nontrivial (a∗H,C ∈ (a, a)) and

uniquely given by φ(a∗H,C) = 0.

Proof. See Appendix.
Under full concealment, the optimal cutoff ability a∗T,C is the root of ψ(a), and a

∗
H,C is

the root of φ(a). Note that both ψ(·) and φ(·) are determined by distribution function F (·) .
Consider two distribution functions F (a) and G (a). We use a∗(F )T,C and a∗(G)T,C to denote the

corresponding optimal cutoff abilities for aggregate quality maximization; and use a∗(F )H,C and

a
∗(G)
H,C to denote the corresponding optimal cutoff abilities for highest quality maximization.

If F dominates G in terms of hazard rate, i.e., f(a)
1−F (a) ≤

g(a)
1−G(a) , where g(a) = G′(a), we can

rank the optimal cutoff abilities across the two distributions.

Proposition 2 If F dominates G in terms of hazard rate, i.e. f(a)
1−F (a) ≤

g(a)
1−G(a) , then a

∗(F )
T,C ≥

a
∗(G)
T,C , and a

∗(F )
H,C ≥ a

∗(G)
H,C .

Proof. See Appendix.
Proposition 2 immediately means that with better ability distribution in terms of hazard

rate dominance, the organizer should set higher quality standard for both aggregate and

highest quality maximizations, since x∗T,C = V a∗T,CF (a
∗
T,C), and x

∗
H,C = V a∗H,CF (a

∗
H,C).

We next present the comparison between optimal cutoff abilities a∗T,C and a
∗
H,C for a given

ability distribution F (·).

Proposition 3 Suppose that Assumption 1 holds, under policy C, the optimal cutoff ability
under aggregate quality maximization is lower than that under highest quality maximization,

i.e., a∗T,C < a∗H,C .

Proof. See Appendix.
Note that the corresponding optimal quality standard levels are x∗T,C = V a∗T,CF (a

∗
T,C),

x∗H,C = V a∗H,CF (a
∗
H,C). By Proposition 3, one can immediately show that when an innovator’s

ability is fully concealed, the optimal quality standard level that maximizes aggregate quality

is strictly lower than the one that maximizes highest quality. Moreover, note that a∗T,C and

a∗H,C are strictly between a and a (see the details in the proofs of Lemmas 3 and 5). Therefore

F (a∗H,C) > F (a∗T,C) > 0, implying the optimal quality standards are strictly positive. We have

the following Corollary.
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Corollary 2 Under policy C, the optimal quality standards, x∗T,C and x
∗
H,C, are nontrivial

under both aggregate quality maximization and highest quality maximization. Moreover, the

optimal quality standard under aggregate quality maximization is lower than that under highest

quality maximization, i.e., x∗T,C < x∗H,C .

It is worth noting that x∗T,C can be zero if Assumption 2 fails to hold. If ψ(a) ≥ 0, then
a∗T,C = a (see the details in the Proof of Lemma 3), which implies that x∗T,C = V aF (a) = 0.

However, x∗H,C is always positive, because lim
a→a

φ(a) < 0 implies a∗H,C > a (see the details in

the Proof of Lemma 5).

3 Comparison between disclosure policies

We are now ready to compare the ex ante expected aggregate quality and highest quality

between the two disclosure policies.

3.1 Comparison without a quality standard

We first look at a benchmark case in which the contest organizer is only able to choose a dis-

closure policy, and is unable to set a quality standard. This case reduces to a question about

the disclosure policy in all-pay contests without threshold investments. Morath and Münster

(2008) compare two information structures (private independent values versus complete in-

formation) for standard auctions selling a single item, including all-pay auctions. They find

that bidders contribute a higher expected aggregate quality in a private-information setting.

In the case of highest quality maximization, setting both threshold abilities to 0 in equa-

tions (2) and (5) and noticing that a > 0, we have

HQD = 2V

∫ a

a

[∫ a

a2

(
a2
2
+

a22
6a1

)
dF (a1)

]
dF (a2)

= V

∫ a

a

[∫ a

a2

(
a2 +

a22
3a1

)
dF (a1)

]
dF (a2),

and

HQC = V

∫ a

a

(1− F 2(a))af(a)da

= V

∫ a

a

[∫ a

a2

(1 + F (a2))a2dF (a1)

]
dF (a2).

The results for the designer’s optimal disclosure policy without a quality standard under
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both aggregate quality maximization and highest quality maximization are summarized in

the following proposition.

Proposition 4 Without a quality standard, fully concealing innovators’abilities elicits both
higher ex ante expected aggregate quality and highest quality, i.e., TQC ≥ TQD and HQC ≥
HQD, regardless of the distribution of innovators’abilities.

Proof. See Appendix.
Proposition 4 shows that without a quality standard, fully concealing innovators’abilities

can kill two birds with one stone: the innovators’aggregate quality and the winner’s quality

can both achieve higher levels.

3.2 Comparison with the optimal quality standard

We now consider the scenario in which the designer is allowed to optimally set the quality

standard. We first present the following comparisons of the optimal cutoffabilities and quality

standards across disclosure policies for a given objective.

Proposition 5 (i) For aggregate quality maximization, we have a∗T,D > a∗T,C and x
∗
T,D >

x∗T,C, i.e. the full disclosure policy requires a higher cutoff ability and a higher optimal quality

standard than the full concealment policy.

(ii) For highest quality maximization, we have a∗H,D ≥ a∗H,C if and only if

a∗H,D

∫ a

a∗H,D

(∫ a

a2

(
1

a2
− 1

a1
)dF (a1)

)
dF (a2) + a∗H,D

∫ a

a∗H,D

(∫ a

a2

1

a1a2
dF (a1)

)
dF (a2)

≥
(1− F (a∗H,D))2

2
. (6)

Moreover, x∗H,D ≥ x∗H,C if and only if a
∗
H,D ≥ a∗H,CF (a

∗
H,C).

Proof. See Appendix.
It is not easy to see whether the conditions in Proposition 5(ii) hold analytically. In

Section 4, we will present numerical analysis for a class of ability distributions, in which we

have a∗H,D < a∗H,C given that condition (6) does not hold, while we still have x
∗
H,D ≥ x∗H,C

given that a∗H,D ≥ a∗H,CF (a
∗
H,C).

We next move to the comparison of disclosure policies under different objectives. We

first compare the aggregate quality between the two disclosure policies, i.e., TQ∗D(a
∗
T,D)

versus TQ∗C(a
∗
T,C). Recall that TQ

∗
D(a

∗
T,D) is the maximum aggregate quality level under

full disclosure policy D with optimal quality standard x∗T,D = V a∗T,D, and that TQ
∗
C(a

∗
T,C) is

the maximum aggregate quality level under full concealment policy C with optimal quality

standard x∗T,C = V a∗T,CF (a
∗
T,C).
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Theorem 1 When quality standards can be set optimally, fully concealing innovators’abili-
ties elicits higher ex ante expected aggregate quality, i.e., TQ∗D(a

∗
T,D) 6 TQ∗C(a

∗
T,C), regardless

of the distribution of innovators’abilities.

Proof. Recall from equations (1) and (4) that TQD(aD) is the aggregate quality under a full
disclosure policy with quality standard xD and corresponding cutoff ability aD = xD

V
, and

that TQC(aC) is the aggregate quality under a full concealment policy with quality standard

xC = V aCF (aC) and corresponding cutoff ability aC .

TQD(aD) = 2V

(∫ a

aD

[∫ a

a2

(
a22 + a2D
2a2

+
a22 − a2D
2a1

)
dF (a1)

]
dF (a2) + aD(1− F (aD))F (aD)

)
.

(1)

TQC(aC) = 2V

[∫ a

aC

a(1− F (a))dF (a) + aC(1− F (aC))F (aC)
]
. (4)

The rest of this proof proceeds in three steps.

Step 1 We claim that for any cutoff ability a, we have TQD(a) 6 TQC(a).

Let

G(a) = [TQD(a)− TQC(a)] /V

= 2

∫ a

a

[∫ a

a2

(
a22 + a2

2a2
+
a22 − a2
2a1

)
dF (a1)

]
dF (a2) + 2a(1− F (a))F (a)

− 2
∫ a

a

a(1− F (a))dF (a)− 2a(1− F (a))F (a)

= 2

∫ a

a

[∫ a

a2

(
a22 + a2

2a2
+
a22 − a2
2a1

)
dF (a1)

]
dF (a2)− 2

∫ a

a

a(1− F (a))dF (a)

= 2

∫ a

a

[∫ a

a2

(
a22 + a2

2a2
+
a22 − a2
2a1

)
dF (a1)− a2(1− F (a2))

]
dF (a2)

= 2

∫ a

a

[
a22 + a2

2a2
(1− F (a2))− a2(1− F (a2)) +

∫ a

a2

a22 − a2
2a1

dF (a1)

]
dF (a2)

= 2

∫ a

a

a2 − a22
2a2

(1− F (a2))dF (a2) + 2
∫ a

a

∫ a

a2

a22 − a2
2a1

dF (a1)dF (a2)

= 2

∫ a

a

∫ a

a2

a2 − a22
2a2

dF (a1)dF (a2) + 2

∫ a

a

∫ a

a2

a22 − a2
2a1

dF (a1)dF (a2)

= 2

∫ a

a

[∫ a

a2

(a2 − a22)
(
1

2a2
− 1

2a1

)
dF (a1)

]
dF (a2).

Note that a1 > a2 > a > 0, and thus G(a) 6 0 for all a.
Step 2 Suppose x∗T,D is the optimal quality standard level that maximizes aggregate

quality under a full disclosure policy, with corresponding cutoff ability a∗T,D =
x∗T,D
V
. Step 1

12



shows that for a = a∗T,D, we have TQD(a
∗
T,D) ≤ TQC(aC = a∗T,D). By Lemma 3, there is a

one-to-one mapping between quality standard xC and corresponding cutoff ability aC , i.e.,

xC = V aCF (aC). Then under quality standard xC = V a∗T,DF (a
∗
T,D), full concealment yields

greater ex ante expected aggregate quality than that under full disclosure.

Step 3 The maximum aggregate quality under a full disclosure policy with optimal cutoff
level a∗T,D is lower than the maximum aggregate quality under full concealment with optimal

cutoff level a∗T,C , given that TQ
∗
D(a

∗
T,D) 6 TQC(aC = a∗T,D) ≤ TQ∗C(a

∗
T,C).

We then compare the highest quality between the two disclosure policies, i.e., HQ∗D(a
∗
H,D)

versus HQ∗C(a
∗
H,C). Recall that HQ

∗
D(a

∗
H,D) is the maximum highest quality level under a full

disclosure policy with optimal quality standard x∗H,D = V a∗H,D, and that HQ
∗
C(a

∗
H,C) is the

maximum highest quality level under a full concealment policy with optimal quality standard

x∗H,C = V a∗H,CF (a
∗
H,C).

Theorem 2 When quality standards can be set optimally, fully disclosing innovators’abili-
ties elicits higher ex ante expected highest quality, i.e., HQ∗D(a

∗
H,D) > HQ∗C(a

∗
H,C), regardless

of the distribution of innovators’abilities.

Proof. Recall from equations (2) and (5) that HQD (aD) is the highest quality under a full

disclosure policy with quality standard xD and corresponding cutoff ability aD = xD
V
, and

that HQC(aC) is the highest quality under a full concealment policy with quality standard

xC = V aCF (aC) and corresponding cutoff ability aC .

HQD (aD) = 2V

( ∫ a
aD

[∫ a
a2

a1a22+a
2
D(a1−a2)+

1
3
a32+

2
3
a3D

2a1a2
dF (a1)

]
dF (a2)

+aD(1− F (aD))F (aD)

)
. (2)

HQC(aC) = V

[
aCF (aC)(1− F (aC)2) +

∫ a

aC

a[1− F (a)2]dF (a)
]
. (5)

The proof proceeds in two steps.

Step 1 We claim that at the optimal ability level under full concealment a∗H,C , we have

HQD(a
∗
H,C) > HQC(a

∗
H,C).

According to equation (2), we have

HQD(a
∗
H,C) = HQD

(
aD = a∗H,C

)
= 2V

 ∫ a
a∗H,C

[∫ a
a2

a1a22+(a∗H,C)
2
(a1−a2)+ 1

3
a32+

2
3(a∗H,C)

3

2a1a2
dF (a1)

]
dF (a2)

+a∗H,C(1− F (a∗H,C))F (a∗H,C)

 .

13



Note that
−(a∗H,C)

2
a2+

1
3
a32+

2
3(a∗H,C)

3

2a1a2
of the integral function in the HQD

(
a∗H,C

)
is increasing

in a2. Setting a2 = a∗H,C in this part gives
−(a∗H,C)

2
a2+

1
3
a32+

2
3(a∗H,C)

3

2a1a2
= 0. Therefore, we have

HQD(a
∗
H,C) > 2V

∫ a

a∗H,C

[∫ a

a2

a1a
2
2 + (a

∗
H,C)

2a1

2a1a2
dF (a1)

]
dF (a2) + 2V a

∗
H,C(1− F (a∗H,C))F (a∗H,C)

= V

∫ a

a∗H,C

[(
a+

(a∗H,C)
2

a

)
(1− F (a))

]
dF (a) + 2V a∗H,C(1− F (a∗H,C))F (a∗H,C).

Define G(a∗H,C) =
[
HQD(a

∗
H,C)−HQC(a∗H,C)

]
/V , then

G(a∗H,C) >

∫ a

a∗H,C

[(
a+

(a∗H,C)
2

a

)
(1− F (a))

]
dF (a) + 2a∗H,C(1− F (a∗H,C))F (a∗H,C)

− a∗H,CF (a∗H,C)(1− F (a∗H,C)2)−
∫ a

a∗H,C

a[1− F (a)2]dF (a)

= a∗H,CF (a
∗
H,C)(1− F (a∗H,C))2 +

∫ a

a∗H,C

[
aF (a)−

(a∗H,C)
2

a

]
d
(1− F (a))2

2

= a∗H,C(1− F (a∗H,C))2
1 + F (a∗H,C)

2
− 1
2

∫ a

a∗H,C

(1− F (a))2
[
F (a) + af(a) +

(a∗H,C)
2

a2

]
da.

Given a > a∗H,C , we have

G(a∗H,C) > a∗H,C(1− F (a∗H,C))2
1 + F (a∗H,C)

2
− 1
2

∫ a

a∗H,C

(1− F (a))2(F (a) + af(a) + 1)da

= a∗H,C(1− F (a∗H,C))2
1 + F (a∗H,C)

2
− 1
2

∫ a

a∗H,C

(1− F (a))2d(aF (a) + a)

= a∗H,C(1− F (a∗H,C))2(1 + F (a∗H,C))−
∫ a

a∗H,C

a(1− F (a)2)dF (a)

=

∫ a

a∗H,C

[a∗H,C(1− F (a∗H,C)2)− a(1− F (a)2)]dF (a).

Let D(a) = a(1− F (a)2); thus D′ (a) = 1− F (a)2 − 2af(a)F (a). Notice that the highest
quality virtual value φ(a) = a − 1−F (a)2

2f(a)F (a)
= a − 1−F (a)

f(a)
1+F (a)
2F (a)

is increasing in a by Lemma

4. Given that a∗H,C −
1−F (a∗H,C)2

2f(a∗H,C)F (a
∗
H,C)

= 0, then we have a − 1−F (a)2
2f(a)F (a)

> 0 when a > a∗H,C ,

which implies D′(a) < 0 when a > a∗H,C . Therefore a
∗
H,C(1− F (a∗H,C)2) > a(1− F (a)2) when

a > a∗H,C , which implies G(a
∗
H,C) > 0.

Step 2 Note that HQ∗D(a
∗
H,D) is the maximum highest quality level under a full disclosure

policy with optimal cutoff ability a∗H,D; thus we have HQ
∗
D(a

∗
H,D) > HQD(aD = a∗H,C) >

14



HQ∗C(a
∗
H,C).

The logics for proving Theorems 1 and 2 is similar. Step 1 of Theorem 1 shows that if

the contest organizer sets quality standard level xD = aDV = aV under full disclosure and

sets quality standard level xC = V aCF (aC) = V aF (a) under full concealment, then both

policies induce the same cutoff ability a, and full concealment always elicits higher aggregate

quality. While such a relationship holds for any cutoff ability level a under aggregate quality

maximization, step 1 of Theorem 2 shows that the reverse result holds for cutoff ability

level a = a∗H,C under highest quality maximization. That is, if the contest organizer sets

quality standard level xD = a∗H,CV under full disclosure and sets quality standard level

xC = V a∗H,CF (a
∗
H,C) under full concealment, both policies induce the same cutoff ability

a∗H,C , and full disclosure can elicit a higher winner’s quality.

Therefore, for the optimal quality standard level that maximizes aggregate (resp. highest)

quality under full disclosure (resp. concealment), there always exists a quality standard level

under full concealment (resp. disclosure) that elicits higher aggregate (resp. highest) quality.

Although we are not able to pin down the optimal quality standard level under full disclosure

explicitly, we show that setting aD = a∗H,C always elicits a higher level of highest quality

under full disclosure, compared with the maximum highest quality under full concealment.

Theorem 1 strengthens Proposition 4 in terms of aggregate quality maximization: fully

concealing innovators’abilities is always an optimal choice, regardless of whether the contest

organizer is allowed to set a quality standard or not. In contrast, Theorem 2 states that in

order to maximize highest quality, if the contest organizer can optimally set a quality stan-

dard, fully concealing innovators’abilities is no longer an optimal disclosure policy. Publicly

announcing innovators’abilities and setting a quality standard strategically can always elicits

higher quality from the winner.

4 Examples and intuitions

In this section, we will first present numerical examples to illustrate the comparisons between

optimal quality standards under different disclosure policies, and demonstrate the optimal

disclosure policies under different quality maximization goals. We will further provide intu-

itions behind the comparison results.

We normalize prize V to unity, and let ability ai be uniformly distributed in [a, a] where

a = 0.1 and a spans the entire interval [5, 10]. In Figure 1, Panels (a) and (b) show the optimal

quality standards across different objectives for the same disclosure policy, and Panels (c) and

(d) show the optimal quality standards across different disclosure policies for a given objective.

One can see from Panels (a) and (b) that the optimal quality standard for aggregate quality

maximization is always lower than that for highest quality maximization, regardless of the

15



information disclosure policy; this demonstrates the properties in Corollaries 1 and 2. Panel

(b) also shows that under concealment policy C, the optimal quality standards increase when

the ability distribution F gets better, which is consistent with the implication of Proposition

2. Panel (a) shows that under full disclosure policy D, the optimal quality standards also

increase when the ability distribution F gets better, although such a prediction is diffi cult to

establish theoretically. Moreover, Panel (c) demonstrates the property in Proposition 5(i),

that is, full disclosure requires a higher optimal quality standard than full concealment for

aggregate quality maximization. Panel (d) shows that for this class of distributions, full

disclosure still requires a higher optimal quality standard for highest quality maximization.5
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Figure 1: Comparison of Optimal Quality Standards

(a) Full Disclosure Policy (b) Full Concealment Policy

(c) Aggregate Quality Maximization (d) Highest Quality Maximization

Figure 2 demonstrates the properties in Proposition 4 and Theorems 1 and 2. Panels (a)

and (b) show that with no quality standard, fully concealing innovators’abilities elicits both

higher expected aggregate quality and expected highest quality, demonstrating the properties

5Regarding Panel (d), in our numerical examples, we always have a∗H,D < a
∗
H,C given that condition (6) in

Proposition 5(ii) does not hold, while we still have x∗H,D ≥ x∗H,C given that a∗H,D ≥ a∗H,CF (a∗H,C). Simulation
data are available from the authors upon request.
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depicted by Proposition 4. With optimally set quality standards, Panel (c) shows that fully

concealing the ability information elicits higher expected aggregate quality, demonstrating

the property in Theorem 1; Panel (d) shows that fully disclosing the ability information elicits

higher expected highest quality, demonstrating the property in Theorem 2.
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Figure 2: (a) and (c) Comparison of Maximal Aggregate Quality

(b) and (d) Comparison of Maximal Highest Quality

Intuitions behind the comparisons

Corollaries 1 and 2 show that the optimal quality standard for aggregate quality maximization

is always lower than that for highest quality maximization, regardless of the information

disclosure policy, which is confirmed by Panels (a) and (b) in Figure 1. The intuition is as

follows. Imposing a higher quality standard tends to better incentivize the high ability types

but at the cost of disincentivizing the low ability types, regardless of the goal of the design

and the prevailing disclosure policy. However, when the goal is to maximize the highest

quality, the designer benefits more from the higher contribution of high types and suffers less

from the lower contribution of low types. It is thus natural for a designer seeking to maximize

the winner’s quality to set a higher quality standard regardless of the disclosure policy.
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Proposition 4 shows that without a quality standard, the full concealment policy always

dominates the full disclosure policy regardless of the designer’s goal, as suggested by Panels

(a) and (b) in Figure 2. This result can be understood as a consequence of the well received

disincentivizing effect in asymmetric contests. Revealing the type profiles creates asymmetric

contests between the two innovators, which tends to discourage the effort supply of both.

Allowing a quality standard would improve the innovators’performance for both goals

under both disclosure policies, and for a given goal, the designer tends to set a higher standard

under full disclosure policy than under full concealment, as shown in Panels (c) and (d) in

Figure 1. A quality standard is an effective instrument to mitigate the disincentivizing

effect in asymmetric contests by forcing the high ability types to work harder, although this

might discourage the low ability types. When the goal is aggregate quality maximization, the

designer cares about the performance of low ability types; in this case, setting a higher quality

standard under full disclosure policy does not generate much advantage compared to setting a

lower quality standard under full concealment policy. Given that the full concealment policy

induces higher aggregate quality when there is no quality standard, it is logical that setting

a higher standard under full disclosure policy cannot fully overcome the initial disadvantage

conferred by the full disclosure policy. As a result, the full concealment policy still induces

higher aggregate quality even when quality standards are set optimally under both policies,

as shown in Panel (c) in Figure 2. For the goal of highest quality maximization, however,

the designer does not care much about the performance of low ability types; thus, setting a

higher quality standard under full disclosure policy can generate a considerable advantage

compared to setting a lower quality standard under full concealment policy, as shown in Panel

(d) in Figure 2. As a result, a full disclosure policy with an optimally set quality standard

can fully overcome the initial disadvantage in the scenario of no quality standards.

5 Concluding remarks

In this paper, we study optimal R&D contest design. Both an information disclosure policy

and a minimum standard are revealed in the literature to be effective instruments for boosting

innovators’ performance. The innovation of our paper is to study how they interact in

an optimal design when both instruments are available to the contest organizer. To our

best knowledge, this is the first work in the contest design literature to jointly integrate an

information disclosure policy and a minimum standard into an analytical framework of R&D

contests.

As a comparison benchmark, we show that without a quality standard, fully concealing

innovators’abilities induces better performance for both ex ante expected aggregate quality

maximization and expected highest quality maximization. In contrast, when quality stan-
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dards can be set optimally for both objectives, we find that while un-surprisingly concealing

information still elicits higher expected aggregate quality, fully disclosing information elicits

higher expected highest quality. These comparison results can be intuitively understood as

follows. First, without quality standard, fully disclosing the innovators’types entails a public

information contest between two asymmetric innovators, which tends to discourage effort

supply. Second, setting a quality standard is more effective in boosting effort supply under a

full disclosure policy, especially for the goal of highest quality maximization given that the

stronger innovator’s effort supply counts more in this case.

Our findings have many economic applications. On the one hand, in an R&D competition

inviting participation from a broad spectrum of the public, it is preferable for the organizer

to conceal innovators’abilities in order to incentivize all participants to work productively.

This is consistent with the real-world observation that participants are normally anonymous in

many web-based open innovation platforms. On the other hand, in a public procurement, such

as landmark construction bidding, the government only cares about the best performance,

and therefore has reason to announce all the bidders’capabilities publicly. Our results also

imply that, all other things being equal, contest organizers should set a high bar for quality

to inspire the best performers, while they should set the bar lower if their goal is to promote

overall performance.

We have focused on the disclosure policies of full disclosure and full concealment. Al-

though we expect that the main insights can be extended to a more general information

disclosure policiy setting, new issues related to information disclosure and quality standards

would arise and create additional challenges for analysis. We leave these interesting issues to

future work.
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Appendix

Proof of Lemma 2

Proof. Combining the three cases studied in Lemma 1, where a1 > a2, and the other

three symmetric cases, where a2 > a1 (namely, a2 > a1 > aD > 0, a2 > aD > a1, and
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aD > a2 > a1), we can obtain the ex ante expected aggregate quality

TQD(aD)

= 2

∫ a

aD

(∫ a

a2

R(a1, a2, aD, V )dF (a1)

)
dF (a2) + 2V aD

∫ a

aD

(∫ aD

a

dF (a2)

)
dF (a1)

= 2V

∫ a

aD

(∫ a

a2

(
a22 + a2D
2a2

+
a22 − a2D
2a1

)
dF (a1)

)
dF (a2) + 2V aD(1− F (aD))F (aD).

According to Lemma 1, if a1 > a2 ≥ aD > 0, the expected highest quality is

E(max[x1, x2])

= P (x2 = 0)E(x1|x2 = 0) + P (x1 = xD, x2 > xD)E(x2|x1 = xD, x2 > xD)

+ P (x1 > x2 > xD)E(x1|x1 > x2 > xD) + P (x2 > x1 > xD)E(x2|x2 > x1 > xD)

=

(
1− V a2 − xD

V a1

)(
xD
V a2

xD +

(
1− xD

V a2

)(
V a2 + xD

2

))
+

xD
V a2

V a2 − xD
V a1

V a2 + xD
2

+ 2

∫ V a2

xD

(∫ V a2

x2

1

V a1V a2
dx1

)
dx2 ×

∫ V a2
xD

(∫ V a2
x2

x1
V a1V a2

dx1

)
dx2∫ V a2

xD

(∫ V a2
x2

1
V a1V a2

dx1

)
dx2

=
V a1V

2a22 + x2D(V a1 − V a2) + 1
3
(V a2)

3 + 2
3
x3D

2V a1V a2

= V

(
a1a

2
2 + a2D(a1 − a2) + 1

3
a32 +

2
3
a3D

2a1a2

)
.

If a1 > aD > a2 > 0, the highest quality is just xD, given that agent 1 will certainly win
if he bids xD = V aD.

Therefore, the ex ante expected highest quality under disclosure is

HQD (aD) = 2V

∫ a

aD

(∫ a

a2

a1a
2
2 + a2D(a1 − a2) + 1

3
a32 +

2
3
a3D

2a1a2
dFa1

)
dF (a2)

+2xD

∫ a

aD

(∫ aD

v

dF (a2)

)
dF (a1)

= 2V

∫ a

aD

(∫ a

a2

a1a
2
2 + a2D(a1 − a2) + 1

3
a32 +

2
3
a3D

2a1a2
dF (a1)

)
dF (a2)

+2V aD(1− F (aD))F (aD).

20



Proof of Proposition 1

Proof. The existence of an optimal threshold ability level is guaranteed, since the support
of aD, [a, a] ∈ (0,+∞) is compact. Note that TQD(·) is continuous and f (·) > 0, so the

optimal threshold ability level is almost always unique. Without loss of generality, we assume

uniqueness hereafter.

Denote the optimal threshold ability that maximizes the expected aggregate quality

TQD(aD) by a∗T,D, and the optimal threshold ability that maximizes highest qualityHQD(aD)

by a∗H,D.

The first order derivative of the ex ante expected aggregate quality under full disclosure

is
dTQD(aD)

daD
= 2V

(
aD
∫ a
aD

(∫ a
a2
( 1
a2
− 1

a1
)dF (a1)

)
dF (a2)

+[1− F (aD)]F (aD)− aDf(aD)F (aD)

)
.

The first order derivative of the ex ante expected highest quality under full disclosure is

dHQD(aD)

daD

= 2V

 aD
∫ a
aD

(∫ a
a2
( 1
a2
− 1

a1
)dF (a1)

)
dF (a2)

+a2D
∫ a
aD

(∫ a
a2

1
a1a2

dF (a1)
)
dF (a2) + [1− F (aD)]F (aD)− aDf(aD)F (aD)

 .

First, we show that a∗T,D and a
∗
H,D must be strictly between a and a. This is true by the

fact that dTQD(aD)
daD

|aD=a > 0,
dHQD(aD)

daD
|aD=a > 0 and

dTQD(aD)
daD

|aD=a < 0,
dHQD(aD)

daD
|aD=a < 0.

Then, we show that dHQD(aD)
daD

> dTQD(aD)
daD

on [a, a) . This can be obtained immediately,

given that dHQD(aD)
daD

− dTQD(aD)
daD

= 2V a2D
∫ a
aD
[
∫ a
a2
( 1
a1a2

dF (a1)]dF (a2) > 0 for any aD ∈ [a, a).
We call this Property A.
Now we are ready to compare optimal threshold abilities a∗T,D and a

∗
H,D based on Property

A. Given that a∗T,D ∈ (a, a), we have TQD(a∗T,D)− TQD(al) =
∫ a∗T,D
al

dTQD(aD)
daD

daD > 0, where
al can be any point in [a, a∗T,D). Thus we have HQD(a

∗
T,D)−HQD(al) =

∫ a∗T,D
al

dHQD(aD)
daD

daD >∫ a∗T,D
al

dTQD(aD)
daD

daD > 0, where the first inequality holds by Property A. This means that for
any a∗T,D ∈ (a, a) and any al ∈ [a, a∗T,D), we have HQD(a∗T,D)−HQD(al) > 0. Note that a∗H,D
is the optimal threshold ability of HQD(aD), so HQD(a∗H,D) ≥ HQD(a

∗
T,D) implies that a

∗
H,D

must not locate on the left side of a∗T,D, i.e., a
∗
H,D > a∗T,D.

Furthermore, because dTQD(aD)
daD

is continuous and TQD(aD) is maximized at aD = a∗T,D,

we have dTQD(aD)
daD

|aD=a∗T,D = 0. By Property A, we have
dHQD(aD)

daD
|aD=a∗T,D > 0. Therefore, we

can conclude that a∗H,D > a∗T,D.
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Proof of Lemma 3

Proof. In a private-value all-pay auction contest, the expected utility of bidder i is Ui(ai, zi) =
[V F (zi)ai − xi(zi)]ci, where Ui(ai, zi) is the utility of i who has ability level ai, and acts as if
his ability level is zi.

Taking the first order condition with respect to zi, we have V f(zi)ai − dxi
dzi
= 0. We can

derive xi(ai) = V
∫ ai
a
f(s)sds. We can allso verify dUi

dai
> 0, dxi

dai
> 0.

Taking threshold investment xC into account, given that aC is the cutoff ability below

which it is unprofitable to provide a positive quality, then we have x(aC) = xC . Also noting

that U(aC) = 0, we get V aCF (aC) = xC . Therefore, the equilibrium bidding strategy in an

R&D contest with cutoff ability is x(ai) = V [aCF (aC) +
∫ ai
aC
sf(s)ds].

The expected aggregate quality of the two bidder is

TQC(aC)

= 2

∫ a

aC

x(s)dF (s)

= 2V

∫ a

aC

[∫ ai

aC

sf(s)ds

]
dF (a) + 2V

∫ a

aC

[aCF (aC)] dF (a)

= 2V

[∫ a

aC

adF (a)−
∫ a

aC

aF (a)dF (a)

]
+ 2V aC(1− F (aC))F (aC)

= 2V

[∫ a

aC

a(1− F (a))dF (a) + aC(1− F (aC))F (aC)
]
.

The first part of the third equation is obtained by integrating by parts.

Taking the first order condition with respect to aC , we have

d(TQC(aC))

d(aC)
= −F (aC)f(aC)

[
aC −

1− F (aC)
f(aC)

]
= 0.

By Assumptions 1 and 2, we know that aC = a is not the aggregate quality maximizing

cutoff value, given that d(TQC(aC))
d(aC)

becomes positive as aC departs from a. Therefore, the

optimal value for aC must be such that aC − 1−F (aC)
f(aC)

= 0, or ψ(aC) = 0. Because (1) by

Assumption 1 ψ(aC) is increasing (and continuous) in aC , (2) by Assumption 2 ψ(a) < 0,

and (3) ψ(a) = a− 1−F (a)
f(a)

= a > 0, we know the equation ψ(aC) = 0 has a unique nontrivial

solution a∗T,C . Thus, the corresponding threshold investment is x
∗
T,C = V a∗T,CF (a

∗
T,C).
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Proof of Lemma 4

Proof. (a) is straightforward, as lim
a→a

F (a) = 0. For (b), by Assumption 1, ψ(a) = a− 1−F (a)
f(a)

is increasing in a, thus we have ψ′(a) = 2 + (1−F (a))f ′(a)
f2(a)

> 0, which implies f ′(a) > −2f2(a)
1−F (a) ,

then we have F (a)f ′(a) + f 2(a) > −2f2(a)
1−F (a) F (a) + f 2(a) = (1−3F (a))f2(a)

1−F (a) . Note that φ′(a) =

2+ (1−F 2(a))
2f2(a)F 2(a)

[F (a)f ′(a)+f 2(a)]; thus φ′(a) > 2+ (1−F 2(a))(1−3F (a))f2(a)
2f2(a)F 2(a)(1−F (a)) = 2+ (1+F (a))(1−3F (a))

2F 2(a)
=

(1−F (a))2
2F 2(a)

> 0. Therefore, φ(a) is increasing in a.

Proof of Lemma 5

Proof. Recall x(ai) = V [aCF (aC) +
∫ ai
aC
sf(s)ds], then

HQC (aC)

=

∫ v

aC

x(ai)dH(ai)

= 2

∫ v

aC

x(ai)F (ai)dF (ai)

= 2V

∫ v

aC

[
aCF (aC) +

∫ v

aC

sf(s)d(s)

]
F (ai)dF (ai)

= V

{
aCF (aC)(1− F (aC)2) +

∫ v

aC

a[1− F (a)2]dF (a)
}
.

Take the first order condition with respect to aC ,

dHQC (aC)

daC
= F (aC)(1− F (aC)2) + aCf(aC)(1− F (aC)2)− 2aCf(aC)F (aC)2 − aCf(aC)(1− F (aC)2)
= F (aC)(1− F (aC)2)− 2aCf(aC)F (aC)2.

Letting dHQC(aC)
daC

= 0, we obtain F (aC)[(1 − F (aC)2) − 2aCf(aC)F (aC)] = 0. We know
that aC = a is not the highest quality maximizing cutoff value, given that dHQC(aC)

daC
becomes

positive as aC departs from a. Therefore, the optimal value for aC must be such that (1 −
F (aC)

2)− 2aCf(aC)F (aC) = 0, or

φ(aC) = aC −
1− F (aC)
f(aC)

1 + F (aC)

2F (aC)
= 0.

Because (1) by Lemma 4 φ(aC) is increasing (and continuous) in aC , (2) lima→a φ(a) < 0,

and (3) φ(a) = a − 1−F (a)
f(a)

1+F (a)
2F (a)

= a > 0, we know that the equation φ(aC) = 0 has a

unique nontrivial solution a∗H,C . Thus, the corresponding threshold investment is x
∗
H,C =
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V a∗H,CF (a
∗
H,C).

Proof of Proposition 2

Proof. By definition of hazard rate dominance, for any a ∈ (a, a), we have f(a)
1−F (a) ≤

g(a)
1−G(a) ,

which implies a− 1−F (a)
f(a)

≤ a− 1−G(a)
g(a)

, i.e., ψF (a) ≤ ψG(a). Note a
∗
T,C is the root of ψ(a), then

ψF (a
∗(F )
T,C ) = 0 = ψG(a

∗(G)
T,C ) ≥ ψF (a

∗(G)
T,C ). Given that ψ(a) is increasing in a by Assumption 1,

we have a∗(F )T,C ≥ a
∗(G)
T,C .

Krishna (2010) (Appendix B) shows that hazard rate dominance implies first-order sto-

chastic dominance, i.e., F (a) ≤ G (a) , which implies 2F (a)
1+F (a)

≤ 2G(a)
1+G(a)

, and further im-

plies f(a)
1−F (a)

2F (a)
1+F (a)

≤ g(a)
1−G(a)

2G(a)
1+G(a)

. Therefore a − 1−F (a)
f(a)

1+F (a)
2F (a)

≤ a − 1−G(a)
g(a)

1+G(a)
2G(a)

, i.e.,

φF (a) ≤ φG(a). By the same argument above, since a∗H,C is the root of φ(a), we have

φF (a
∗(F )
H,C ) = 0 = φG(a

∗(G)
H,C ) ≥ φF (a

∗(G)
H,C ). Given that φ(a) is increasing in a by Lemma 4, we

have a∗(F )H,C ≥ a
∗(G)
H,C .

Proof of Proposition 3

Proof. Because a∗T,C ∈ (a, a), we have F (a∗T,C) ∈ (0, 1). By the fact
1+F (a∗T,C)

2F (a∗T,C)
> 1, we know

φ(a∗T,C) = a∗T,C −
1−F (a∗T,C)
f(a∗T,C)

1+F (a∗T,C)

2F (a∗T,C)
< a∗T,C −

1−F (a∗T,C)
f(a∗T,C)

= ψ(a∗T,C). Given that ψ(a
∗
T,C) = 0, we

have φ(a∗T,C) < 0. Note that φ(a) is increasing in a by Lemma 4, then φ(a
∗
H,C) = 0 > φ(a∗T,C)

implies a∗H,C > a∗T,C .

Proof of Proposition 4

Proof. Proposition 2 of Morath and Münster (2008) shows that a private-information set-
ting elicits higher expected aggregate quality, which means that innovators receive a higher

expected aggregate quality under the concealment policy in our setting.
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For highest quality comparison, note that

(HQC −HQD) /V

=

∫ a

a

[∫ a

a2

(
F (a2)a2 −

a22
3a1

)
dF (a1)

]
dF (a2)

>
∫ a

a

[∫ a

a2

(
F (a2)a2 −

a2
3

)
dF (a1)

]
dF (a2)

=

∫ a

a

a2

(
F (a2)−

1

3

)
(1− F (a2))dF (a2)

=

∫ a

a

a2d

[
−1
3
F (a2)(1− F (a2))2

]
= m(a)−m(a) +

∫ a

a

1

3
F (a2)(1− F (a2))2da2

where m(a2) = −1
3
a2F (a2)(1− F (a2))2.

Because [a, a] ∈ (0,+∞), we have m(a) = m(a) = 0; therefore (HQC −HQD) /V >∫ a
a
1
3
F (a2)(1− F (a2))2da2 > 0.

Proof of Proposition 5

Proof. Part (i): Recall from the proof of Proposition 1 that we have a∗T,D, which must be

an interior solution. It is given by

a∗T,D

∫ a

a∗T,D

(∫ a

a2

(
1

a2
− 1

a1
)dF (a1)

)
dF (a2) + [1− F (a∗T,D)]F (a∗T,D)− a∗T,Df(a∗T,D)F (a∗T,D) = 0.

We thus have

a∗T,D −
1− F (a∗T,D)
f(a∗T,D)

=
a∗T,D

∫ a
a∗T,D

(∫ a
a2
( 1
a2
− 1

a1
)dF (a1)

)
dF (a2)

F (a∗T,D)f(a
∗
T,D)

> 0.

Note that ψ(a∗T,C) = a∗T,C −
1−F (a∗T,C)
f(a∗T,C)

= 0, by Assumption 1; we thus have a∗T,D > a∗T,C ,

which further leads to x∗T,D > x∗T,C given that x
∗
T,D = V a∗T,D and x

∗
T,C = V a∗T,CF (a

∗
T,C).

Part (ii): Recall from the proof of Proposition 1 that we have a∗H,D, which must be an
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interior solution. It is given by

a∗H,D

∫ a

a∗H,D

(∫ a

a2

(
1

a2
− 1

a1
)dF (a1)

)
dF (a2)

+a∗2H,D

∫ a

a∗H,D

(∫ a

a2

1

a1a2
dF (a1)

)
dF (a2)

+[1− F (a∗H,D)]F (a∗H,D)− a∗H,Df(a∗H,D)F (a∗H,D)
= 0.

We thus have

a∗H,D −
1− F (a∗H,D)
f(a∗H,D)

1 + F (a∗H,D)

2F (a∗H,D)

=
1

F (a∗H,D)f(a
∗
H,D)

 a∗H,D
∫ a
a∗H,D

(∫ a
a2
( 1
a2
− 1

a1
)dF (a1)

)
dF (a2)

+a∗2H,D
∫ a
a∗H,D

(∫ a
a2

1
a1a2

dF (a1)
)
dF (a2)−

(1−F (a∗H,D))2

2

 .

Note that φ(a∗H,C) = a∗H,C −
1−F (a∗H,C)
f(a∗H,C)

1+F (a∗H,C)

2F (a∗H,C)
= 0, by Lemma 4(b), we thus have a∗H,D >

a∗H,C if and only if

a∗H,D

∫ a

a∗H,D

(∫ a

a2

(
1

a2
− 1

a1
)dF (a1)

)
dF (a2) + a∗2H,D

∫ a

a∗H,D

(∫ a

a2

1

a1a2
dF (a1)

)
dF (a2)

≥
(1− F (a∗H,D))2

2
.

Given that x∗H,D = V a∗H,D and x
∗
H,C = V a∗H,CF (a

∗
H,C), we have x

∗
H,D ≥ x∗H,C if and only if

a∗H,D ≥ a∗H,CF (a
∗
H,C).
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